Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14504
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorMainik, Philipp-
dc.contributor.authorHsu, Li‐Yun-
dc.contributor.authorZimmer, Claudius W.-
dc.contributor.authorFauser, Dominik-
dc.contributor.authorSteeb, Holger-
dc.contributor.authorBlasco, Eva-
dc.date.accessioned2024-06-13T11:56:57Z-
dc.date.available2024-06-13T11:56:57Z-
dc.date.issued2023de
dc.identifier.issn2365-709X-
dc.identifier.issn2365-709X-
dc.identifier.other1891301047-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-145233de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14523-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14504-
dc.description.abstractAdvances in soft robotics strongly rely on the development and manufacturing of new responsive soft materials. In particular, light‐based 3D printing techniques, and especially, digital light processing (DLP), offer a versatile platform for the fast manufacturing of complex 3D/4D structures with a high spatial resolution. In this work, DLP all‐printed bilayered structures exhibiting reversible and multi‐responsive behavior are presented for the first time. For this purpose, liquid crystal elastomers (LCEs) are used as active layers and combined with a printable non‐responsive elastomer acting as a passive layer. Furthermore, selective light response is incorporated by embedding various organic dyes absorbing light at different regimes in the active layers. An in‐depth characterization of the single materials and printed bilayers demonstrates a reversible and selective response. Last, the versatility of the approach is shown by DLP printing a bilayered complex 3D structure consisting of four different materials (a passive and three different LCE active materials), which exhibit different actuation patterns when irradiated with different wavelengths of light.en
dc.description.sponsorshipExcellence Cluster “3D Matter Made to Orderde
dc.description.sponsorshipCarl Zeiss Foundationde
dc.description.sponsorshipExcellence Cluster “Data‐Integrated Simulation Science (SimTech)de
dc.description.sponsorshipSoft Material Robotic Systemsde
dc.description.sponsorshipGerman Research Council (DFG), Research Training Groupde
dc.language.isoende
dc.relation.uridoi:10.1002/admt.202300727de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc670de
dc.titleDLP 4D printing of multi‐responsive bilayered structuresen
dc.typearticlede
dc.date.updated2024-04-25T13:24:38Z-
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Mechanik (Bauwesen)de
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten8de
ubs.publikation.sourceAdvanced materials technologies 8 (2023), No. 2300727de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
ADMT_ADMT202300727.pdf2,42 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons