Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14702
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorZhang, Xingxing-
dc.contributor.authorKornmeier, Joana R.-
dc.contributor.authorHofmann, Michael-
dc.contributor.authorLangebeck, Anika-
dc.contributor.authorAlameddin, Shadi-
dc.contributor.authorAlessio, Renan Pereira-
dc.contributor.authorFritzen, Felix-
dc.contributor.authorBunn, Jeffrey R.-
dc.contributor.authorCabeza, Sandra-
dc.date.accessioned2024-07-24T13:09:44Z-
dc.date.available2024-07-24T13:09:44Z-
dc.date.issued2023de
dc.identifier.issn1475-1305-
dc.identifier.issn0039-2103-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-147215de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14721-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14702-
dc.description.abstractTungsten carbide particles reinforced metal matrix composite (MMC) coatings can significantly improve surface wear resistance owing to their increased surface hardness. However, the presence of macro‐ and micro‐residual stresses in MMC coatings can have detrimental effects, such as reducing service life. In this study, neutron diffraction was used to determine the residual stresses in spherical fused tungsten carbide (sFTC) reinforced Cu matrix composite surface deposits after laser melt injection. We also developed a thermo‐mechanical coupled finite element model to predict residual stresses. Our findings reveal that sFTC/Cu composite deposits produced with a preheating temperature of 400°C have low residual stresses, with a maximum tensile residual stress of 98 MPa in the Cu matrix on the top surface. In contrast, the sFTC/bronze (CuAl10Ni5Fe4) composite deposit exhibits very high residual stresses, with a maximum tensile residual stress in the Cu matrix on the top surface reaching 651 MPa. These results provide a better understanding of the magnitudes and distributions of residual stresses in sFTC‐reinforced Cu matrix composite surface deposits manufactured via laser melt injection.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipGerman Federation of Industrial Research Associations (AiF)de
dc.description.sponsorshipInstitut Laue‐ Langevin (ILL)de
dc.description.sponsorshipOak Ridge National Laboratoryde
dc.description.sponsorshipGerman Federation of Industrial Research Associationsde
dc.description.sponsorshipStuttgart Center for Simulation Sciencede
dc.language.isoende
dc.relation.uridoi:10.1111/str.12457de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/de
dc.subject.ddc620de
dc.titleResidual stresses in Cu matrix composite surface deposits after laser melt injectionen
dc.typearticlede
dc.date.updated2024-04-25T13:23:46Z-
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Mechanik (Bauwesen)de
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.noppnyesde
ubs.publikation.seiten11de
ubs.publikation.sourceStrain 59 (2023), No. e12457de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
STR_STR12457.pdf3,49 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons