Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14709
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorNissler, Elisabeth-
dc.contributor.authorScherrer, Samuel-
dc.contributor.authorClass, Holger-
dc.contributor.authorMüller, Tanja-
dc.contributor.authorHermannspan, Mark-
dc.contributor.authorOsmancevic, Esad-
dc.contributor.authorHaslauer, Claus-
dc.date.accessioned2024-07-24T15:11:17Z-
dc.date.available2024-07-24T15:11:17Z-
dc.date.issued2023de
dc.identifier.issn1539-1663-
dc.identifier.issn1539-1663-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-147284de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14728-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14709-
dc.description.abstractDrinking‐water quality in supply pipe networks can be negatively affected by high temperatures during hot summer months due to detrimental bacteria encountering ideal conditions for growth. Thus, water suppliers are interested in estimating the temperature in their distribution networks. We investigate both experimentally and by numerical simulation the heat and water transport from ground surface into the subsurface, (i.e., above drinking‐water pipes). We consider the meteorological forcing functions by a sophisticated approach to model the boundary conditions for the heat balance at the soil-atmosphere interface. From August to December 2020, soil temperatures and soil moisture were measured dependent on soil type, land‐use cover, and weather data at a pilot site, constructed specifically for this purpose at the University of Stuttgart with polyethylene and cast‐iron pipes installed under typical in situ conditions. We included this interface condition at the atmosphere-subsurface boundary into an integrated non‐isothermal, variably saturated (Richards') the numerical simulator DuMux 3. This allowed, after calibration, to match measured soil temperatures with ±2°C accuracy. The land‐use cover influenced the soil temperature in 1.5 m more than the soil material used for back‐filling the trench above the pipe.en
dc.language.isoende
dc.relation.uridoi:10.1002/vzj2.20286de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/de
dc.subject.ddc624de
dc.titleHeat transport from atmosphere through the subsurface to drinking‐water supply pipesen
dc.typearticlede
dc.date.updated2024-04-25T13:23:42Z-
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Wasser- und Umweltsystemmodellierungde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.noppnyesde
ubs.publikation.seiten270-286de
ubs.publikation.sourceVadose zone journal 22 (2023), S. 270-286de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
VZJ2_VZJ220286.pdf2,57 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons