Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-1478
Authors: Hufendiek, Kai
Kaltschmitt, Martin
Title: Einsatz künstlicher neuronaler Netze bei der kurzfristigen Lastprognose
Issue Date: 1998
metadata.ubs.publikation.typ: Konferenzbeitrag
metadata.ubs.publikation.source: VGB-Konferenz Forschung für die Kraftwerkstechnik 1998
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-3744
http://elib.uni-stuttgart.de/handle/11682/1495
http://dx.doi.org/10.18419/opus-1478
Abstract: Um die erweiterten Möglichkeiten des Stromhandels, die sich durch die geplante Liberalisierung des Strommarktes ergeben, optimal nutzen zu können, muß die Planung zur Deckung der Stromnachfrage in Energieversorgungs- und anderen Unternehmen auf einer verläßlichen Lastprognose beruhen. Künstliche neuronale Netze, über deren Möglichkeiten bei der Lastprognose ein kurzer Überblick gegeben wird, weisen in diesem Zusammenhang, u. a. gegenüber der klassischen multiplen Regression, Vorteile auf. Anhand typischer Merkmale werden die Lastprognosesysteme mit künstlichen neuronalen Netzen, die teilweise bereits mit Erfolg eingesetzt werden, kurz charakterisiert. Darüber hinaus werden noch vorhandene Probleme im Umgang mit dieser Methode aufgezeigt, die vor allem darin bestehen, daß die Entwicklung solcher Systeme bisher weitgehend auf Versuch und Irrtum basiert. Daher wird abschließend eine entsprechende Entwicklungsmethodik vorgestellt und diskutiert, die zwar im Detail noch auszugestalten ist, auf die aber für eine breite wirtschaftliche Anwendung individuell angepaßter Systeme nicht verzichtet werden kann.
Appears in Collections:04 Fakultät Energie-, Verfahrens- und Biotechnik

Files in This Item:
File Description SizeFormat 
374_1.pdf23,75 kBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.