Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-1665
Autor(en): Bestvater, Felix
Titel: Charakterisierung rekombinanter Kathepsin B-Fluoreszenzproteinchimären in Lungentumorzellen : Möglichkeiten neuer fluoreszenzspektroskopischer Verfahren
Sonstige Titel: Characterisation of recombinant cathepsin B-fluorescent protein chimeras in lung tumour cells. Potentialities of new fluorescence spectroscopic methods.
Erscheinungsdatum: 2005
Dokumentart: Dissertation
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-23456
http://elib.uni-stuttgart.de/handle/11682/1682
http://dx.doi.org/10.18419/opus-1665
Zusammenfassung: Genetische Konversion bei simultaner Kotransfektion GFP-Varianten mit hoher Sequenzidentität werden häufig für Mehrfachmarkierungen eingesetzt. Ihre simultane Kotransfektion kann zu einer Konversion der Fluoreszenzeigenschaften führen und so die Interpretation von Experimenten beeinträchtigen. Unter Standard-Transfektionsbedingungen ergaben ~8%, bei deren Variation bis zu 26% der permanent exprimierenden Zellen veränderte Fusionsproteine. Es wurde gezeigt, daß der Effekt auf der Rekombination homologer Nukleotidsequenzen basiert. Sukzessive Transfektion oder niedrige Sequenzidentität verhinderten die Rekombination. Die genaue und reproduzierbare Quantifizierung der Konversionsraten gestattet allgemeine Untersuchungen von Rekombinations- und Reparatur-Prozessen. Zwei-Photonen-Anregung Fluoreszenzspektren für zahlreiche zellbiologisch relevante abiotische Fluorochrome sowie Zellextrakte verschiedener GFP-Varianten wurden mittels der Zwei-Photonen-Anregung generiert. In den meisten Fällen gab es keine wesentlichen Unterschiede zwischen den Zwei-Photonen- und den Ein-Photonen-Emissionsspektren. Die Absorptionsmaxima der breiteren und differenzierteren Zwei-Photonen-Kurven waren jedoch meist um wenige Nanometer bis hin zu weitläufig abweichenden Spektralverläufen blau-verschoben. Die Fluoreszenzintensität der GFP-Varianten war bei beiden Anregungsarten pH-abhängig und hatte ihre maximale Emission im Alkalischen. Trotz einer unvollständigen Regenerierung der Fluoreszenz nach Ansäuerung blieb das Spektralprofil unverändert. Zwei-Photonen-Mikroskopie in Verbindung mit 3D-Rekonstruktion wurde erfolgreich eingesetzt, um subzelluläre Strukturen in vivo hochaufgelöst darzustellen. In vivo-Charakterisierung von Kathepsin B (CB) Entstehung und Verteilung von CB wurden unter Verwendung rekombinanter CB-Konstrukte und Fluoreszenzproteine (FP) untersucht. Das CB-FP-Fusionsprotein wurde nur in konstitutiv exprimierenden Zellen prozessiert. Es lokalisierte in retikulären und vesikulären Kompartimenten sowie in Assoziation mit der Plasmamembran. Versuche mit Transportinhibitoren sprechen für eine reguläre Sortierung via M6P-Weg. Fluorometrische Aktivitätsmessungen an Zellextrakten, Zellkulturüberständen und isolierten Zellkernen ergaben eine stark erhöhte CB-Aktivität in Zellklonen. Ein neuartiger Ansatz zur Inhibition der CB-Enzymaktivität wurde mit Hilfe rekombinanter Stefin B (StB)-Inhibitoren unternommen. Die Adressierung von StB ins ER/Golgi durch eine vorgeschaltete Zielsequenz ergab keine stärkere Inhibierung von CB gegenüber den zytoplasmatischen StB-Varianten. Die Überexpression des CB führte zu einer geringen Erhöhung der Enzymaktivitäten von endogenem Kathepsin K und L. Dies kann auf eine mögliche Koregulation mit CB bzw. eine generelle Hochregulierung degradierender Peptidasen aufgrund eines erhöhten Proteinpegels zurückgeführt werden. Die Verwendung FP-markierter rekombinanter CB-Konstrukte eignet sich daher gut als in vivo-Modell zur Charakterisierung von nativem CB. Nukleäres CB und Zelltod Alternative CB-Spleißvarianten führen zu einem Translationsprodukt, dem Signalpeptid und Teile des Pro-Peptids fehlen. Dieses nativ trunkierte d51CB kann daher nicht regulär prozessiert und sortiert werden. Statt dessen wird es über eine aktivierte N-terminale Zielsequenz in die Mitochondrien geleitet. Obwohl d51CB vermutlich keine typische CB-Enzymaktivität besitzt, könnte es unabhängig von der Funktion des regulären Enzyms eine Rolle bei Malignität spielen und Zelltod verursachen. Neben d51CB kann auch reifes CB als Folge beschädigter Lysosomen zytoplasmatisch auftreten. Solche "aberranten" CB-Formen wurden mit Hilfe künstlicher CB-FP-Mutanten untersucht. d51CB wurde überwiegend in Mitochondrien und z.T. im Zellkern nachgewiesen. Die künstlich trunkierte CB-Einzelkettenform wurde nicht prozessiert und zeigte keine reguläre CB-Enzymaktivität während transienter Expression in Lungentumorzellen. Sie kam im Zytoplasma, im Zellkern und in der Midbody-Matrix mitotischer Zellen vor. Bleichstudien wiesen mobile und immobile nukleäre Fraktionen nach. Die Anreicherung von künstlich trunkiertem CB im Zellkern führte zu dessen Auflösung und zu Zelltod. Vermutlich werden diese Phänomene nicht über die reguläre CB-Enzymaktivität, sondern über ein noch unbekanntes Aktivitätsprofil ausgelöst. Die Molekülregion, die den Kernimport vermittelt, ist gemäß einer Mutationsanalyse ein zusammengesetztes Signal innerhalb der schweren Kette des CB. Die Ergebnisse legen nahe, daß CB neben dem Signalpeptid und der mitochondrialen Zielsequenz weitere Signale enthält, die für seine differenzierte Adressierung in den Zellkern, in Vesikel oder in andere Organellen verantwortlich sind. Hier wird eine Hierarchie von Zielsignalen im CB-Molekül postuliert, die durch ihre Verfügbarkeit und Stärke bestimmt wird. Diese schließt alternative Transportmechanismen neben dem üblichen M6P-Weg ein.
Genetic conversion during simultaneous co-transfection GFP variants with high sequence identity are frequently used for multicolour labelling. Their simultaneous co-transfection can give false-positive results caused by a conversion of their spectral properties. Under standard transfection conditions, approximately 8%, depending on the conditions, up to 26% of cells expressed altered fusion proteins. It was shown that the effect is based on recombination between homologous nucleotide sequences. Consecutive transfection or low sequence similarities avoided recombination. The detailed and reproducible quantification of the conversion rates allows the investigation of recombination and repair processes in general. Two-photon excitation Fluorescence spectra for several abiotic fluorochromes relevant in cell imaging and for different GFP-variants produced in human tumour cells were generated by two-photon excitation. The majority of the investigated fluorochromes did not reveal significant discrepancies between the two-photon and the one-photon emission spectra. However, a blue-shift of the absorption maxima ranging from a few nanometres up to considerably differing courses of the spectrum was found for most fluorochromes. The emission intensity of the GFP variants was dependent on the pH for both types of excitation; its maximum was recorded in the alkaline range. Reconstitution of emission intensity after pH quenching was incomplete, albeit that the respective spectral profiles were identical to those prequenching. Non-linear laser scanning fluorescence microscopy combined with 3D reconstruction was used to visualize subcellular structures at high resolution in vivo. In vivo characterisation of cathepsin B (CB) Expression and distribution of CB were investigated using recombinant CB constructs and fluorescent proteins (FP). The CB-FP fusion protein was processed correctly in constitutively expressing cells only. It localised in reticular and vesicular compartments as well as in association with the plasma membrane. Experiments with transport inhibitors suggest a regular sorting via the M6P pathway. Fluorometric activity measurements of cell clones resulted in a highly elevated CB activity within the cell extracts, the supernatants, and the isolated cell nuclei. A novel approach for the inhibition of CB specific activity was performed using recombinant Stefin B (StB) inhibitors. The addressing of the inhibitor into the ER/Golgi by a preceding targeting sequence did not result in a stronger inhibition of CB in comparison to the cytoplasmic StB variants. Overexpression of CB led to a slight elevation of the enzymatic activities of intrinsic cathepsins K and L suggesting a possible co-regulation with CB or a general up-regulation of degrading peptidases due to a higher protein level, respectively. The use of FP-tagged recombinant CB constructs is thus suitable as an in vivo-model for the characterisation of native CB. Nuclear CB and cell death Splicing variants of human CB primary transcripts result in an expression product which lacks the signal peptide and parts of the propeptide. This naturally truncated d51CB is thus unable to follow the regular processing and sorting pathway. It is addressed to the mitochondria through an activated N-terminal mitochondrial targeting signal instead. Although d51CB is supposed to be devoid of the typical CB enzymatic activity, it might play a role in malignancies and trigger cell death/apoptosis independent from the function of the regular enzyme. Cytoplasmic presence of the mature CB might occur as a result of lysosomal damage. Such "aberrant" proteins were investigated by artificial CB-GFP chimeras. d51CB was found predominantly in mitochondria but also inside the nucleus. The artificial single chain form was not processed and did not reveal typical enzymatic CB activity during transient expression in lung carcinoma cells. It localized in the cytoplasm, inside the cell nucleus, and in the midbodies of dividing cells. Bleaching experiments revealed both mobile and immobile fractions in the nucleus. Nuclear accumulation of artificially truncated CB led to disintegration of nuclei, followed by cell death. Probably, these phenomena are not necessarily triggered by its regular enzymatic activity but by a yet unknown activity profile. According to a mutational analysis, the part of CB that mediates its nuclear import is a signal patch within its heavy chain domain. The results suggest that besides the N-terminal signal peptide also other CB domains contain patterns which are responsible for a differentiated targeting of the molecule, e.g. to the mitochondria, to the nucleus, or to vesicles. Here, a hierarchy of targeting signals depending on their strength and availability is postulated. This implies other possible transport mechanisms besides the usual trafficking via the M6P pathway.
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei GrößeFormat 
Diss_FB_2005.pdf13,56 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.