Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-274
Authors: Scholz, Bernd
Title: Application of a micropolar model to the localization phenomena in granular materials : general model, sensitivity analysis and parameter optimization
Other Titles: Anwendung eines mikropolaren Modells zur Beschreibung von Lokalisierungsphänomenen innerhalb granularer Materialien : Modellbeschreibung, Sensitivitätsanalyse und Parameter Optimierung
Issue Date: 2007
metadata.ubs.publikation.typ: Dissertation
Series/Report no.: Report / Institut für Mechanik (Bauwesen), Lehrstuhl für Kontinuumsmechanik, Universität Stuttgart;15
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-33552
http://elib.uni-stuttgart.de/handle/11682/291
http://dx.doi.org/10.18419/opus-274
ISBN: 3-937399-15-1
Abstract: In the present work, the localization phenomena of granular material has been analyzed in order to provide a method for the computation of realistic boundary-value problems. The reason for this localization effects are material instabilities caused by the softening behavior of the material, which can be observed at homogeneous material tests. For this purpose, in the first step, the non-polar behavior of granular material is considered. Based on observations from material tests, a non-linear elastic law as well as hardening and softening laws in the context of the elasto-plasticity have been developed. In the next step, based on the described non-polar behavior, inhomogeneous biaxial tests are taken into account for the investigation of the micropolar behavior. As a consequence of the material softening, localization zones, so-called shear bands, appear. For the numerical computation of such localization phenomena, regularization techniques are required, since the standard continuum theory results in an ill-posed problem. Due to the fact that in the biaxial tests a finite thickness of the shear band can be observed, a regularization of the problem is naturally given by the effects due to the microstructure of the material. In case of granular material, the microstructure can be taken into account by application of the Cosserat or micropolar theory, which is applied in this thesis for the computation of localization problems. One of the main problems by use of the micropolar theory is, beside the numerically implementation, the identification of the associated material parameters. Considering inhomogeneous biaxial tests with shear banding, the effect of regularization can be observed by two facts. Firstly, by the gradual decrease of the stress after the appearance of the shear band and, secondly, by the finite thickness of the incoming shear band. Hence, both effects are used for the determination of the additional parameters of the Cosserat theory. Whereas the usage of stress-strain relations,in the context of the literature concerning the parameter identification procedure is a usual method, the consideration of the shear band thickness is a new challenge. Hence, a new method has therefore been developed. In addition to the Cosserat parameters, all the other material parameters, namely, the parameters of the elastic behavior as well as the parameters of the plastic hardening and softening must be identified. In consequence of the high number of material parameters given therewith, the overall identification process was performed by two major steps. Thus, in the first step, homogeneous material tests are applied for the determination of the parameters governing the non-polar behavior. In the second step, the material parameters of the micropolar behavior are determined basing on inhomogeneous biaxial tests, which enable the observation of the incoming shear band by use of the stereophotogrammetry. Generally, the identification procedure yields an inverse problem. For the solution of such problems, a lot of methods in theframework of the non-linear optimization exist. With a view to the high numerical costs for the computation of the boundary-value problem of the biaxial test, the gradient-based SQP method has been applied in this work. The computational cost can be further reduced by the application of the semi-analytical sensitivity analysis, which is also discussed in this work.The stepwise realization of the overall identification process as well as the semi-analytical computation of the sensitivities is demonstrated exemplarily by use of experimental data basing on Hostun sand. Finally, in the present work, with the particle model a completely different approach for the modeling of granular material is discussed which traces back to the Molecular Dynamics. Using this particle model, one is able to simulate the granular microstructure of the material, i.e., the single material grains, directly.Basing on a two-dimensional particle model, the biaxial test has been modeled, with a set of $30,000$ monodisperse, circular particles.With these simulations, the appearance of shear bands were shown and, furthermore, the occurrence of couple stress along the shear band was demonstrated in the same manner as done before with the continuum model. With these results, it has been illustrated that the Cosserat theory is a correct approach for the simulation of localization effects of granular media.
Die mechanische Beschreibung granularer Medien ist in vielen Gebieten des Ingenieurwesens von Bedeutung. Insbesondere kommen granulare Materialien, im speziellen Sand, oft im Baugrund vor und somit ist die Kenntnis der mechanischen Eigenschaften dieser Materialien wichtig zur Berechnung der Lastabtragung von Bauwerken. Des Weiteren ist das Verständnis des Verhaltens granularer Materialen von Bedeutung zur Vorhersage von geologischen Katastrophen wie Böschungs- oder Grundbrüchen. Der Grund für das Auftreten dieser Phänomene liegt im mechanisch instabilen Verhalten granularer Medien. So kann bei Böschungs- oder Grundbrüchen beobachtet werden, dass die gesamte Deformation in dünnen Bändern oder Flächen, den so genannten Scherbändern bzw. Scherflächen konzentriert ist. Die Erforschung dieser Lokalisierungsphänomene, welche unmittelbar mit dem instabilen Verhalten dieser Materialien zusammenhängen, ist Bestandteil der aktuellen Materialforschung, sowie das Thema der vorliegenden Arbeit. Zuerst wird dabei das verwendete Modell im Rahmen der erweiterten Kontinuumstheorie (mikropolaren Theorie) vorgestellt. Dies beinhaltet die kinematischen Beziehungen, die Bilanzgleichungen sowie die konstitutiven Annahmen. Zur Beschreibung des elastischen Verhaltens wird dabei ein nichtlineares Elastizitätsgesetz verwendet, zur Beschreibung des elastoplastischen Verhaltens wird ein Ansatz entwickelt bei dem sowohl die Ver- als auch die Entfestigung des Materials Berücksichtigt wird. Danach wird eine numerische Lösungsstrategie zur Lösung die eingeführten Gleichungen unter Verwendung der Methode der Finiten Elemente vorgestellt, womit Testbeispiele gerechnet werden können. Zur Lösung realistischer Probleme ist allerdings die Kenntnis der Werte aller im Modell benötigten Materialparameter erforderlich. Aufgrund der vielen Verschiedenen Parameter wird die Identifikation in zwei Schritten durchgeführt. Zunächst werden die Parameter des nicht polaren Verhaltens bestimmt und im Anschluss die Parameter des polaren Verhaltens. Dabei werden zunächst die verwendeten Methoden der nichtlinearen Optimierung vorgestellt und anschließend das schrittweise Vorgehen der Identifikation erläutert. Zum effektiven Einsatz der verwendeten gradientenbasierten Optimierungsmethoden ist die semi-analytische Ermittlung der Sensitivitäten notwendig. Daher werden diese auf das mikropolare Kontinuum erweitert, womit auch Aussage über die Korrelationen zwischen den Materialparametern gemacht werden können. Abschließend wird das Entwickelte Identifikationsverfahren am Beispiel von Hostun-Sand demonstriert. Wobei Versuchsdaten der Universitäten Stuttgart und Grenoble zugrunde gelegt werden. Im Anschluss daran wird ein zweiter Ansatz zur Beschreibung granularer Materialien vorgestellt. Bei der Simulation des Biaxialversuches können damit die im Mikropolaren Kontinuum auftretenden Effekte dabei in gleicher Weise beobachtet werden können. Somit wird gezeigt, dass die Mikropolare Theorie zur Beschreibung granularer Materialien geeignet ist.
Appears in Collections:02 Fakultät Bau- und Umweltingenieurwissenschaften

Files in This Item:
File Description SizeFormat 
diss_bernd_scholz.pdf2,77 MBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.