Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-5106
Autor(en): Arnold, Axel
Breitsprecher, Konrad
Fahrenberger, Florian
Kesselheim, Stefan
Lenz, Olaf
Holm, Christian
Titel: Efficient algorithms for electrostatic interactions including dielectric contrasts
Erscheinungsdatum: 2013
Dokumentart: Zeitschriftenartikel
Erschienen in: Entropy 15 (2013), S. 4569-4588. URL http://dx.doi.org./10.3390/e15114569
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-87454
http://elib.uni-stuttgart.de/handle/11682/5123
http://dx.doi.org/10.18419/opus-5106
Zusammenfassung: Coarse grained models of soft matter are usually combined with implicit solvent models that take the electrostatic polarizability into account via a dielectric background. In biophysical or nanoscale simulations that include water, this constant can vary greatly within the system. Performing molecular dynamics or other simulations that need compute exact electrostatic interactions between charges in those systems is computationally demanding. We review here several algorithms developped by us that perform exactly this task. For planar dielectric surfaces in partial periodic boundary conditions, the arising image charges can be either treated with the MMM2D algorithm in a very efficient and accurate way, or with the ELC term that enables the user to use his favorite 3D periodic Coulomb solver . Arbitrarily shaped interfaces can be dealt with using induced surface charges with the ICC algorithm. Finally, the local electrostatics algorithm MEMD (Maxwell Equations Molecular Dynamics) allows even to employ a smoothly varying dielectric constant in the systems. We introduce the concepts of these three algorithms, and an extension for the inclusion of boundaries that are to be held fixed at constant potential (metal conditions). For each method, we present a showcase application to highlight the importance of dielectric interfaces.
Enthalten in den Sammlungen:08 Fakultät Mathematik und Physik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
entropy_15_04569.pdf2,68 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.