Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-5687
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorRöhrle, Oliverde
dc.contributor.authorDavidson, John B.de
dc.contributor.authorPullan, Andrew J.de
dc.date.accessioned2013-10-15de
dc.date.accessioned2016-03-31T10:09:18Z-
dc.date.available2013-10-15de
dc.date.available2016-03-31T10:09:18Z-
dc.date.issued2012de
dc.identifier.other394317513de
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-86684de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/5704-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-5687-
dc.description.abstractModels of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle’s response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle’s response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuummechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue.en
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.classificationSkelettmuskel , Kontinuumsmechanikde
dc.subject.ddc620de
dc.subject.otherskeletal muscle mechanics , multi-scale , continuum mechanics , excitation-contraction coupling , motorunit recruitment , tibialis anterioren
dc.titleA physiologically based, multi-scale model of skeletal muscle structure and functionen
dc.typearticlede
dc.date.updated2014-12-17de
ubs.fakultaetInterfakultäre Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.fakultaetFakultät Bau- und Umweltingenieurwissenschaftende
ubs.institutStuttgart Research Centre for Simulation Technology (SRC SimTech)de
ubs.institutSonstige Einrichtungde
ubs.institutInstitut für Mechanik (Bauwesen)de
ubs.opusid8668de
ubs.publikation.sourceFrontiers in physiology 3 (2012), article 358. DOI http://dx.doi.org./10.3389/fphys.2012.00358de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:11 Interfakultäre Einrichtungen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
fphys_03_00358.pdf1,61 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.