Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-6933
Authors: Schneider, Guido
Title: Error estimates for the Ginzburg-Landau approximation
Issue Date: 1994
metadata.ubs.publikation.typ: Zeitschriftenartikel
metadata.ubs.publikation.source: Zeitschrift für Angewandte Mathematik und Physik 45 (1994), S. 433-457. URL http://dx.doi.org./10.1007/BF00945930
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-40763
http://elib.uni-stuttgart.de/handle/11682/6950
http://dx.doi.org/10.18419/opus-6933
Abstract: Modulation equations play an essential role in the understanding of complicated dynamical systems near the threshold of instability. Here we look at systems defined over domains with one unbounded direction and show that the Ginzburg-Landau equation dominates the dynamics of the full problem, locally, at least over a long time-scale. As an application of our approximation theorem we look here at Bénard's problem. The method we use involves a careful handling of critical modes in the Fourier-transformed problem and an estimate of Gronwall's type.
Appears in Collections:15 Fakultätsübergreifend / Sonstige Einrichtung

Files in This Item:
File Description SizeFormat 
schnei2.pdf1,22 MBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.