Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.18419/opus-6944
Langanzeige der Metadaten
DC Element | Wert | Sprache |
---|---|---|
dc.contributor.author | Hähl, Hermann | de |
dc.date.accessioned | 2009-07-03 | de |
dc.date.accessioned | 2016-03-31T11:41:30Z | - |
dc.date.available | 2009-07-03 | de |
dc.date.available | 2016-03-31T11:41:30Z | - |
dc.date.issued | 1981 | de |
dc.identifier.other | 314409696 | de |
dc.identifier.uri | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-41213 | de |
dc.identifier.uri | http://elib.uni-stuttgart.de/handle/11682/6961 | - |
dc.identifier.uri | http://dx.doi.org/10.18419/opus-6944 | - |
dc.description.abstract | In a compact, connected topological projective plane, let Ω be a closed Lie subgroup of the group of all axial collineations with a fixed axis A. We compare the set З\A consisting of the centres of all non-identical homologies in Ω to orbits of the group Ω[A] of all elations contained in Ω and of its connected component θ = (Ω[A])1. It is shown that З\A is the union of at most countably many θ-orbits; moreover, З\A turns out to be a single θ-orbit whenever the connected component of Ω contains non-identical homologies. This result is analogous to a well-known theorem of André for finite planes. It has numerous consequences for the structure of collineation groups of compact, connected projective planes. | en |
dc.language.iso | en | de |
dc.rights | info:eu-repo/semantics/openAccess | de |
dc.subject.classification | Divisionsalgebra , Homologie | de |
dc.subject.ddc | 510 | de |
dc.title | Homologies and elations in compact, connected projective planes | en |
dc.type | article | de |
dc.date.updated | 2014-09-11 | de |
ubs.fakultaet | Fakultätsübergreifend / Sonstige Einrichtung | de |
ubs.institut | Sonstige Einrichtung | de |
ubs.opusid | 4121 | de |
ubs.publikation.source | Topology and its application 12 (1981), S. 49-63. URL http://dx.doi.org./10.1016/0166-8641(81)90029-8 | de |
ubs.publikation.typ | Zeitschriftenartikel | de |
Enthalten in den Sammlungen: | 15 Fakultätsübergreifend / Sonstige Einrichtung |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
hae12.pdf | 2,74 MB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.