Modeling and identification of nonlinear systems using SISO LEM-Hammerstein and LEM-Wiener model structures
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This paper applies the concept of linearization around the equilibrium manifold (LEM) already presented in the literature in order to construct model structures that can be viewed as extensions of the conventional Wiener and Hammerstein models. Instead of linear time-invariant subsystems in association with static nonlinearities, these extensions exhibit variable dynamic character and can therefore model a broader class of systems than the conventional cited approaches. Moreover, the identification strategy already used with LEM systems can be applied in order to construct such models from experiments, and the techniques destined for analysis and control of Wiener and Hammerstein systems can be applied promptly. To application of these concepts to the modeling and identification is demonstrated with a numerical example, considering a heat exchange system.