Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-8286
Autor(en): Schmitt, Syn
Günther, Michael
Rupp, Tille
Bayer, Alexandra
Häufle, Daniel F. B.
Titel: Theoretical hill-type muscle and stability : numerical model and application
Erscheinungsdatum: 2013
Dokumentart: Zeitschriftenartikel
Erschienen in: Computational and mathematical methods in medicine (2013), article ID 570878. URL http://dx.doi.org/10.1155/2013/570878
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-98227
http://elib.uni-stuttgart.de/handle/11682/8303
http://dx.doi.org/10.18419/opus-8286
Zusammenfassung: The construction of artificial muscles is one of the most challenging developments in today's biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator.
Enthalten in den Sammlungen:15 Fakultätsübergreifend / Sonstige Einrichtung

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Schmitt2013.pdf540,61 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.