Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-8803
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.advisorMiehe, Christian (Prof. Dr.-Ing.)-
dc.contributor.authorAldakheel, Fadi-
dc.date.accessioned2016-07-04T08:58:08Z-
dc.date.available2016-07-04T08:58:08Z-
dc.date.issued2016de
dc.identifier.isbn978-3-937859-22-4-
dc.identifier.other473146304de
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-88205de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/8820-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-8803-
dc.description.abstractThe underlying work is concerned with the development of physically-motivated constitutive models for the description of size effects within the context of inelastic deformations. A key aspect of this thesis is to develop a theoretical and computational framework for gradient-extended dissipative solids. It incorporates spatial gradients of selected micro-structural fields that account for length scale effects and describe the evolving dissipative mechanisms. In contrast to classical theories of local continuum mechanics, where the internal variables are determined by ordinary differential equations (ODEs), these global micro-structural (order parameter) fields are governed by partial differential equations (PDEs) and boundary conditions reflecting the continuity of these variables. The proposed framework for gradient-extended dissipative solids is first used to address the development of phenomenological theories of strain gradient plasticity. The corresponding model guarantees from the computational side a mesh-objective response in the post-critical ranges of softening materials. In this regard, a mixed variational principle for the evolution problem of gradient plasticity undergoing small and large strains is developed. A novel finite element formulation of the coupled problem incorporating a long-range hardening/softening parameter and its dual driving force is also proposed. A second employment of the introduced framework is related to the thermo-mechanical coupling in gradient plasticity theory within small strain deformations. Two global solution procedures for the thermo-mechanically coupled problem are introduced, namely the product formula algorithm and the coupled-simultaneous solution algorithm. For this purpose, a family of mixed finite element formulations is derived to account for the coupled thermo-mechanical boundary-value problem. A further application of the proposed framework deals with the phase-field modeling of ductile fracture undergoing large strains. To this end, a novel variational-based framework for the phase-field modeling of ductile fracture in gradient-extended elastic-plastic solids is proposed. Herein, two independent length scales, that regularize both the plastic response as well as the crack discontinuities, are introduced. This ensures that the failure zone of ductile fracture takes place inside the plastic zone, and guarantees from the computational perspective mesh objectivity in the post-critical range. The performance of these models is tested on a broad range of homogeneous and heterogeneous representative numerical simulations.en
dc.language.isoende
dc.publisherStuttgart : Institut für Mechanik (Bauwesen), Lehrstuhl I, Universität Stuttgartde
dc.relation.ispartofseriesBericht / Institut für Mechanik (Bauwesen), Lehrstuhl I;34-
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc620de
dc.titleMechanics of nonlocal dissipative solids: gradient plasticity and phase field modeling of ductile fractureen
dc.title.alternativeMechanik für nichtlokale dissipative Festkörper: Gradientenplastizität und Phasenfeldmodellierung von duktilem Bruchde
dc.typedoctoralThesisde
ubs.bemerkung.externMSC-Klassifikation: 74C05, 74C10, 74C15, 74C20, 74F05, 74R10, 74R20, 74S05de
ubs.dateAccepted2016-05-25-
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.institutInstitut für Mechanik (Bauwesen)de
ubs.publikation.seitenviii, 140de
ubs.publikation.typDissertationde
ubs.schriftenreihe.nameBericht / Institut für Mechanik (Bauwesen), Lehrstuhl Ide
ubs.thesis.grantorBau- und Umweltingenieurwissenschaftende
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Aldakheel_Dissertation.pdfDissertation15,9 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.