Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-9924
Authors: Defrance, Josselin
Schäferling, Martin
Weiss, Thomas
Title: Modeling of second-harmonic generation in periodic nanostructures by the Fourier modal method with matched coordinates
Issue Date: 2018
metadata.ubs.publikation.typ: Zeitschriftenartikel
metadata.ubs.publikation.seiten: 13746-13758
metadata.ubs.publikation.source: Optics express 26 (2018), pp. 13746-13758
URI: http://elib.uni-stuttgart.de/handle/11682/9941
http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-99419
http://dx.doi.org/10.18419/opus-9924
ISSN: 1094-4087
Abstract: We present an advanced formulation of the Fourier modal method for analyzing the second-harmonic generation in multilayers of periodic arrays of nanostructures. In our method, we solve Maxwell’s equations in a curvilinear coordinate system, in which the interfaces are defined by surfaces of constant coordinates. Thus, we can apply the correct Fourier factorization rules as well as adaptive spatial resolution to nanostructures with complex cross sections. We extend here the factorization rules to the second-harmonic susceptibility tensor expressed in the curvilinear coordinates. The combination of adaptive curvilinear coordinates and factorization rules allows for efficient calculation of the second-harmonic intensity, as demonstrated for one- and two-dimensional periodic nanostructures.
Appears in Collections:08 Fakultät Mathematik und Physik

Files in This Item:
File Description SizeFormat 
Express_PAPER-28-04.pdf1,07 MBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.