A new estimate for the Ginzburg-Landau approximation on the real axis

dc.contributor.authorSchneider, Guidode
dc.date.accessioned2009-11-11de
dc.date.accessioned2016-03-31T11:41:51Z
dc.date.available2009-11-11de
dc.date.available2016-03-31T11:41:51Z
dc.date.issued1994de
dc.date.updated2013-05-08de
dc.description.abstractModulation equations play an essential role in the understanding of complicated systems near the threshold of instability. For scalar parabolic equations for which instability occurs at nonzero wavelength, we show that the associated Ginzburg-Landau equation dominates the dynamics of the nonlinear problem locally, at least over a long timescale. We develop a method which is simpler than previous ones and allows initial conditions of lower regularity. It involves a careful handling of the critical modes in the Fourier-transformed problem and an estimate of Gronwall's type. As an example, we treat the Kuramoto-Shivashinsky equation. Moreover, the method enables us to handle vector-valued problems.en
dc.identifier.other318102862de
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-40752de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/7089
dc.identifier.urihttp://dx.doi.org/10.18419/opus-7072
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.classificationGinzburg-Landau-Gleichung , Modulationsgleichungde
dc.subject.ddc510de
dc.subject.othermodulation equations , Ginzburg-Landau approximation , nonlinear partial differential equations on unbounded domainsen
dc.titleA new estimate for the Ginzburg-Landau approximation on the real axisen
dc.typearticlede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutSonstige Einrichtungde
ubs.opusid4075de
ubs.publikation.sourceJournal of Nonlinear Science 4 (1994), S. 23-34. URL http://dx.doi.org./10.1007/BF02430625de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
schnei3.pdf
Size:
668.38 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1021 B
Format:
Plain Text
Description: