Machine learning assists in increasing the time resolution of X-ray computed tomography applied to mineral precipitation in porous media

dc.contributor.authorLee, Dongwon
dc.contributor.authorWeinhardt, Felix
dc.contributor.authorHommel, Johannes
dc.contributor.authorPiotrowski, Joseph
dc.contributor.authorClass, Holger
dc.contributor.authorSteeb, Holger
dc.date.accessioned2025-05-15T07:46:42Z
dc.date.issued2023
dc.date.updated2024-11-26T08:24:52Z
dc.description.abstractMany subsurface engineering technologies or natural processes cause porous medium properties, such as porosity or permeability, to evolve in time. Studying and understanding such processes on the pore scale is strongly aided by visualizing the details of geometric and morphological changes in the pores. For realistic 3D porous media, X-Ray Computed Tomography (XRCT) is the method of choice for visualization. However, the necessary high spatial resolution requires either access to limited high-energy synchrotron facilities or data acquisition times which are considerably longer (e.g. hours) than the time scales of the processes causing the pore geometry change (e.g. minutes). Thus, so far, conventional benchtop XRCT technologies are often too slow to allow for studying dynamic processes. Interrupting experiments for performing XRCT scans is also in many instances no viable approach. We propose a novel workflow for investigating dynamic precipitation processes in porous media systems in 3D using a conventional XRCT technology. Our workflow is based on limiting the data acquisition time by reducing the number of projections and enhancing the lower-quality reconstructed images using machine-learning algorithms trained on images reconstructed from high-quality initial- and final-stage scans. We apply the proposed workflow to induced carbonate precipitation within a porous-media sample of sintered glass-beads. So we were able to increase the temporal resolution sufficiently to study the temporal evolution of the precipitate accumulation using an available benchtop XRCT device.en
dc.description.sponsorshipProjekt DEAL
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.identifier.issn2045-2322
dc.identifier.other1927396719
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-163790de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16379
dc.identifier.urihttps://doi.org/10.18419/opus-16360
dc.language.isoen
dc.relation.uridoi:10.1038/s41598-023-37523-0
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620
dc.titleMachine learning assists in increasing the time resolution of X-ray computed tomography applied to mineral precipitation in porous mediaen
dc.typearticle
ubs.fakultaetBau- und Umweltingenieurwissenschaften
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungen
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Mechanik (Bauwesen)
ubs.institutInstitut für Wasser- und Umweltsystemmodellierung
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.seiten16
ubs.publikation.sourceScientific reports 13 (2023), No. 10529
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s41598-023-37523-0.pdf
Size:
3.21 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: