On extremal domains and codomains for convolution of distributions and fractional calculus

dc.contributor.authorKleiner, T.
dc.contributor.authorHilfer, R.
dc.date.accessioned2024-12-18T11:25:01Z
dc.date.available2024-12-18T11:25:01Z
dc.date.issued2022de
dc.date.updated2024-11-02T09:02:17Z
dc.description.abstractIt is proved that the class of c-closed distribution spaces contains extremal domains and codomains to make convolution of distributions a well-defined bilinear mapping. The distribution spaces are systematically endowed with topologies and bornologies that make convolution hypocontinuous whenever defined. Largest modules and smallest algebras for convolution semigroups are constructed along the same lines. The fact that extremal domains and codomains for convolution exist within this class of spaces is fundamentally related to quantale theory. The quantale theoretic residual formed from two c-closed spaces is characterized as the largest c-closed subspace of the corresponding space of convolutors. The theory is applied to obtain maximal distributional domains for fractional integrals and derivatives, for fractional Laplacians, Riesz potentials and for the Hilbert transform. Further, maximal joint domains for families of these operators are obtained such that their composition laws are preserved.en
dc.description.sponsorshipProjekt DEALde
dc.description.sponsorshipUniversität Stuttgartde
dc.identifier.issn1436-5081
dc.identifier.issn0026-9255
dc.identifier.other1914923308
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-154642de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15464
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15445
dc.language.isoende
dc.relation.uridoi:10.1007/s00605-021-01646-1de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc530de
dc.titleOn extremal domains and codomains for convolution of distributions and fractional calculusen
dc.typearticlede
ubs.fakultaetMathematik und Physikde
ubs.institutInstitut für Computerphysikde
ubs.publikation.seiten121-152de
ubs.publikation.sourceMonatshefte für Mathematik 198 (2022), S. 121-152de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s00605-021-01646-1.pdf
Size:
589.41 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: