Basic representation theory of crossed modules

dc.contributor.authorTruong, Monika
dc.date.accessioned2021-06-16T10:28:29Z
dc.date.available2021-06-16T10:28:29Z
dc.date.issued2018de
dc.description.abstractA group corresponds to a topological space with one nontrivial homotopy group. A crossed module corresponds to a topological space with two nontrivial homotopy groups. In classical group theory, Cayley's Theorem constructs for every group G an injective group morphism to the symmetric group S_G. For a crossed module V, we have a similar statement. For every category C, we have the symmetric crossed module S_C. For every crossed module V, we construct an injective crossed module morphism to the symmetric crossed module S_VCat. Suppose given an R-linear category M. On the one hand, we obtain the invertible monoidal category Aut_R(M) by means of category theory. On the other hand, we have the symmetric crossed module S_M as in the Cayley context. In S_M, we have the crossed submodule Aut^CM_R(M) containing only the R-linear elements of S_M. We consider the corresponding invertible monoidal category (Aut^CM_R(M))Cat. We show that there exists a monoidal isofunctor Real_M : (Aut^CM_R(M))Cat -~-> Aut_R(M). This means that starting with M, we obtain essentially the same object via crossed module theory as via category theory. A representation of a group G on an R-module N is given by a group morphism G -> Aut_R(N). Analogously, a representation of a crossed module V on an R-linear category M is given by a crossed module morphism V -> Aut^CM_R(M). We begin to study the representation theory of crossed modules.en
dc.identifier.other1760585939
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-115535de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/11553
dc.identifier.urihttp://dx.doi.org/10.18419/opus-11536
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc510de
dc.titleBasic representation theory of crossed modulesen
dc.typemasterThesisde
ubs.fakultaetMathematik und Physikde
ubs.institutFakultät Mathematik und Physik (Institutsübergreifend)de
ubs.publikation.seitenxvi, 196de
ubs.publikation.typAbschlussarbeit (Master)de

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
master_truong_monika_pdfa.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: