Fabrication and characterization of single-crystal diamond membranes for quantum photonics with tunable microcavities

dc.contributor.authorHeupel, Julia
dc.contributor.authorPallmann, Maximilian
dc.contributor.authorKörber, Jonathan
dc.contributor.authorMerz, Rolf
dc.contributor.authorKopnarski, Michael
dc.contributor.authorStöhr, Rainer
dc.contributor.authorReithmaier, Johann Peter
dc.contributor.authorHunger, David
dc.contributor.authorPopov, Cyril
dc.date.accessioned2023-08-10T12:43:44Z
dc.date.available2023-08-10T12:43:44Z
dc.date.issued2020
dc.date.updated2021-01-07T19:05:01Z
dc.description.abstractThe development of quantum technologies is one of the big challenges in modern research. A crucial component for many applications is an efficient, coherent spin-photon interface, and coupling single-color centers in thin diamond membranes to a microcavity is a promising approach. To structure such micrometer thin single-crystal diamond (SCD) membranes with a good quality, it is important to minimize defects originating from polishing or etching procedures. Here, we report on the fabrication of SCD membranes, with various diameters, exhibiting a low surface roughness down to 0.4 nm on a small area scale, by etching through a diamond bulk mask with angled holes. A significant reduction in pits induced by micromasking and polishing damages was accomplished by the application of alternating Ar/Cl2 + O2 dry etching steps. By a variation of etching parameters regarding the Ar/Cl2 step, an enhanced planarization of the surface was obtained, in particular, for surfaces with a higher initial surface roughness of several nanometers. Furthermore, we present the successful bonding of an SCD membrane via van der Waals forces on a cavity mirror and perform finesse measurements which yielded values between 500 and 5000, depending on the position and hence on the membrane thickness. Our results are promising for, e.g., an efficient spin–photon interface.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipGerman Federal Ministry of Education and Research (BMBF)de
dc.identifier.issn2072-666X
dc.identifier.other185785800X
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-134329de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13432
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13413
dc.language.isoende
dc.relation.uridoi:10.3390/mi11121080de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc530de
dc.titleFabrication and characterization of single-crystal diamond membranes for quantum photonics with tunable microcavitiesen
dc.typearticlede
ubs.fakultaetMathematik und Physikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institut3. Physikalisches Institutde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten18de
ubs.publikation.sourceMicromachines 11 (2020), No. 1080de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
micromachines-11-01080-v2.pdf
Size:
3.4 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Plain Text
Description: