On quiver Grassmannians and orbit closures for gen-finite modules

dc.contributor.authorPressland, Matthew
dc.contributor.authorSauter, Julia
dc.date.accessioned2023-05-02T07:39:49Z
dc.date.available2023-05-02T07:39:49Z
dc.date.issued2021de
dc.date.updated2023-03-25T07:33:10Z
dc.description.abstractWe show that endomorphism rings of cogenerators in the module category of a finite-dimensional algebra A admit a canonical tilting module, whose tilted algebra B is related to A by a recollement. Let M be a gen-finite A-module, meaning there are only finitely many indecomposable modules generated by M. Using the canonical tilts of endomorphism algebras of suitable cogenerators associated to M, and the resulting recollements, we construct desingularisations of the orbit closure and quiver Grassmannians of M, thus generalising all results from previous work of Crawley-Boevey and the second author in 2017. We provide dual versions of the key results, in order to also treat cogen-finite modules.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipMax-Planck-Gesellschaftde
dc.description.sponsorshipAlexander von Humboldt-Stiftungde
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn1386-923X
dc.identifier.issn1572-9079
dc.identifier.other1845608879
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-130299de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13029
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13010
dc.language.isoende
dc.relation.uridoi:10.1007/s10468-021-10028-yde
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.uricreativecommons.org/licenses/by/4.0/de
dc.subject.ddc510de
dc.titleOn quiver Grassmannians and orbit closures for gen-finite modulesen
dc.typearticlede
ubs.fakultaetMathematik und Physikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Algebra und Zahlentheoriede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten413-445de
ubs.publikation.sourceAlgebras and representation theory 25 (2022), S. 413-445de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s10468-021-10028-y.pdf
Size:
608 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: