On quiver Grassmannians and orbit closures for gen-finite modules
dc.contributor.author | Pressland, Matthew | |
dc.contributor.author | Sauter, Julia | |
dc.date.accessioned | 2023-05-02T07:39:49Z | |
dc.date.available | 2023-05-02T07:39:49Z | |
dc.date.issued | 2021 | de |
dc.date.updated | 2023-03-25T07:33:10Z | |
dc.description.abstract | We show that endomorphism rings of cogenerators in the module category of a finite-dimensional algebra A admit a canonical tilting module, whose tilted algebra B is related to A by a recollement. Let M be a gen-finite A-module, meaning there are only finitely many indecomposable modules generated by M. Using the canonical tilts of endomorphism algebras of suitable cogenerators associated to M, and the resulting recollements, we construct desingularisations of the orbit closure and quiver Grassmannians of M, thus generalising all results from previous work of Crawley-Boevey and the second author in 2017. We provide dual versions of the key results, in order to also treat cogen-finite modules. | en |
dc.description.sponsorship | Deutsche Forschungsgemeinschaft | de |
dc.description.sponsorship | Max-Planck-Gesellschaft | de |
dc.description.sponsorship | Alexander von Humboldt-Stiftung | de |
dc.description.sponsorship | Projekt DEAL | de |
dc.identifier.issn | 1386-923X | |
dc.identifier.issn | 1572-9079 | |
dc.identifier.other | 1845608879 | |
dc.identifier.uri | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-130299 | de |
dc.identifier.uri | http://elib.uni-stuttgart.de/handle/11682/13029 | |
dc.identifier.uri | http://dx.doi.org/10.18419/opus-13010 | |
dc.language.iso | en | de |
dc.relation.uri | doi:10.1007/s10468-021-10028-y | de |
dc.rights | info:eu-repo/semantics/openAccess | de |
dc.rights.uri | creativecommons.org/licenses/by/4.0/ | de |
dc.subject.ddc | 510 | de |
dc.title | On quiver Grassmannians and orbit closures for gen-finite modules | en |
dc.type | article | de |
ubs.fakultaet | Mathematik und Physik | de |
ubs.fakultaet | Fakultätsübergreifend / Sonstige Einrichtung | de |
ubs.institut | Institut für Algebra und Zahlentheorie | de |
ubs.institut | Fakultätsübergreifend / Sonstige Einrichtung | de |
ubs.publikation.seiten | 413-445 | de |
ubs.publikation.source | Algebras and representation theory 25 (2022), S. 413-445 | de |
ubs.publikation.typ | Zeitschriftenartikel | de |