A robust way to justify the derivative NLS approximation

dc.contributor.authorHeß, Max
dc.contributor.authorSchneider, Guido
dc.date.accessioned2025-03-24T15:15:58Z
dc.date.issued2023
dc.date.updated2024-11-02T09:26:34Z
dc.description.abstractThe derivative nonlinear Schrödinger (DNLS) equation can be derived as an amplitude equation via multiple scaling perturbation analysis for the description of the slowly varying envelope of an underlying oscillating and traveling wave packet in dispersive wave systems. It appears in the degenerated situation when the cubic coefficient of the similarly derived NLS equation vanishes. It is the purpose of this paper to prove that the DNLS approximation makes correct predictions about the dynamics of the original system under rather weak assumptions on the original dispersive wave system if we assume that the initial conditions of the DNLS equation are analytic in a strip of the complex plane. The method is presented for a Klein-Gordon model with a cubic nonlinearity.en
dc.description.sponsorshipProjekt DEAL
dc.identifier.issn1420-9039
dc.identifier.issn0044-2275
dc.identifier.other1924982501
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-160580de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16058
dc.identifier.urihttps://doi.org/10.18419/opus-16039
dc.language.isoen
dc.relation.uridoi:10.1007/s00033-023-02121-7
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510
dc.titleA robust way to justify the derivative NLS approximationen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetMathematik und Physik
ubs.institutInstitut für Analysis, Dynamik und Modellierung
ubs.publikation.seiten20
ubs.publikation.sourceZeitschrift für angewandte Mathematik und Physik 74 (2023), No. 224
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s00033-023-02121-7.pdf
Size:
557.58 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: