Global existence via Ginzburg-Landau formalism and pseudo- orbits of Ginzburg-Landau approximations

dc.contributor.authorSchneider, Guidode
dc.date.accessioned2009-06-30de
dc.date.accessioned2016-03-31T11:41:28Z
dc.date.available2009-06-30de
dc.date.available2016-03-31T11:41:28Z
dc.date.issued1994de
dc.date.updated2014-10-16de
dc.description.abstractThe so-called Ginzburg-Landau formalism applies for parabolic systems which are defined on cylindrical domains, which are close to the threshold of instability, and for which the unstable Fourier modes belong to non-zero wave numbers. This formalism allows to describe an attracting set of solutions by a modulation equation, here the Ginzburg-Landau equation. If the coefficient in front of the cubic term of the formally derived Ginzburg-Landau equation has negative real part the method allows to show global existence in time in the original system of all solutions belonging to small initial conditions in L∞. Another aim of this paper is to construct a pseudo-orbit of Ginzburg-Landau approximations which is close to a solution of the original system up to t = ∞. We consider here as an example the socalled Kuramoto-Shivashinsky equation to explain the methods, but it applies also to a wide class of other problems, like e.g. hydrodynamical problems or reaction-diffusion equations, too.en
dc.identifier.other309021472de
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-40771de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/6951
dc.identifier.urihttp://dx.doi.org/10.18419/opus-6934
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.classificationGinzburg-Landau-Gleichung , Ginzburg-Landau-Theoriede
dc.subject.ddc510de
dc.titleGlobal existence via Ginzburg-Landau formalism and pseudo- orbits of Ginzburg-Landau approximationsen
dc.typearticlede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutSonstige Einrichtungde
ubs.opusid4077de
ubs.publikation.sourceCommunications in mathematical physics 164 (1994), S. 157-179. URL http://projecteuclid.org/euclid.cmp/1104270714de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
schnei1.pdf
Size:
2.21 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1021 B
Format:
Plain Text
Description: