Determination of muscle shape deformations of the tibialis anterior during dynamic contractions using 3D ultrasound

dc.contributor.authorSahrmann, Annika S.
dc.contributor.authorVosse, Lukas
dc.contributor.authorSiebert, Tobias
dc.contributor.authorHandsfield, Geoffrey G.
dc.contributor.authorRöhrle, Oliver
dc.date.accessioned2024-07-12T07:38:37Z
dc.date.available2024-07-12T07:38:37Z
dc.date.issued2024de
dc.date.updated2024-06-19T17:24:27Z
dc.description.abstractPurpose: In this paper, we introduce a novel method for determining 3D deformations of the human tibialis anterior (TA) muscle during dynamic movements using 3D ultrasound. Materials and Methods: An existing automated 3D ultrasound system is used for data acquisition, which consists of three moveable axes, along which the probe can move. While the subjects perform continuous plantar- and dorsiflexion movements in two different controlled velocities, the ultrasound probe sweeps cyclically from the ankle to the knee along the anterior shin. The ankle joint angle can be determined using reflective motion capture markers. Since we considered the movement direction of the foot, i.e., active or passive TA, four conditions occur: slow active, slow passive, fast active, fast passive. By employing an algorithm which defines ankle joint angle intervals, i.e., intervals of range of motion (ROM), 3D images of the volumes during movement can be reconstructed. Results: We found constant muscle volumes between different muscle lengths, i.e., ROM intervals. The results show an increase in mean cross-sectional area (CSA) for TA muscle shortening. Furthermore, a shift in maximum CSA towards the proximal side of the muscle could be observed for muscle shortening. We found significantly different maximum CSA values between the fast active and all other conditions, which might be caused by higher muscle activation due to the faster velocity. Conclusion: In summary, we present a method for determining muscle volume deformation during dynamic contraction using ultrasound, which will enable future empirical studies and 3D computational models of skeletal muscles.en
dc.description.sponsorshipGerman Research Foundation (DFG)de
dc.description.sponsorshipStuttgart Center for Simulation Sciencede
dc.description.sponsorshipBundesministerium für Bildung und Forschungde
dc.identifier.issn2296-4185
dc.identifier.other1895451434
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-146506de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14650
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14631
dc.language.isoende
dc.relation.uridoi:10.3389/fbioe.2024.1388907de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc570de
dc.subject.ddc620de
dc.titleDetermination of muscle shape deformations of the tibialis anterior during dynamic contractions using 3D ultrasounden
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetWirtschafts- und Sozialwissenschaftende
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Modellierung und Simulation Biomechanischer Systemede
ubs.institutInstitut für Sport- und Bewegungswissenschaftde
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten12de
ubs.publikation.sourceFrontiers in bioengineering and biotechnology 12 (2024), No. 1388907de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
fbioe-12-1388907.pdf
Size:
2.12 MB
Format:
Adobe Portable Document Format
Description:
Artikel
No Thumbnail Available
Name:
DataSheet1.zip
Size:
6.78 MB
Format:
Unknown data format
Description:
Supplement

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: