Dictionary-based online-adaptive structure-preserving model order reduction for parametric Hamiltonian systems
dc.contributor.author | Herkert, Robin | |
dc.contributor.author | Buchfink, Patrick | |
dc.contributor.author | Haasdonk, Bernard | |
dc.date.accessioned | 2025-05-28T14:12:23Z | |
dc.date.issued | 2024 | |
dc.date.updated | 2025-01-24T13:42:30Z | |
dc.description.abstract | Classical model order reduction (MOR) for parametric problems may become computationally inefficient due to large sizes of the required projection bases, especially for problems with slowly decaying Kolmogorov n -widths. Additionally, Hamiltonian structure of dynamical systems may be available and should be preserved during the reduction. In the current presentation, we address these two aspects by proposing a corresponding dictionary-based, online-adaptive MOR approach. The method requires dictionaries for the state-variable, non-linearities, and discrete empirical interpolation (DEIM) points. During the online simulation, local basis extensions/simplifications are performed in an online-efficient way, i.e., the runtime complexity of basis modifications and online simulation of the reduced models do not depend on the full state dimension. Experiments on a linear wave equation and a non-linear Sine-Gordon example demonstrate the efficiency of the approach. | en |
dc.description.sponsorship | Deutsche Forschungsgemeinschaft | |
dc.identifier.issn | 1572-9044 | |
dc.identifier.issn | 1019-7168 | |
dc.identifier.uri | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-164810 | de |
dc.identifier.uri | https://elib.uni-stuttgart.de/handle/11682/16481 | |
dc.identifier.uri | https://doi.org/10.18419/opus-16462 | |
dc.language.iso | en | |
dc.relation.uri | doi:10.1007/s10444-023-10102-7 | |
dc.rights | CC BY | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 510 | |
dc.title | Dictionary-based online-adaptive structure-preserving model order reduction for parametric Hamiltonian systems | en |
dc.type | article | |
dc.type.version | publishedVersion | |
ubs.fakultaet | Mathematik und Physik | |
ubs.institut | Institut für Angewandte Analysis und numerische Simulation | |
ubs.publikation.noppn | yes | de |
ubs.publikation.seiten | 34 | |
ubs.publikation.source | Advances in computational mathematics 50 (2024), No. 12 | |
ubs.publikation.typ | Zeitschriftenartikel |