Slack-based tunable damping leads to a trade-off between robustness and efficiency in legged locomotion
dc.contributor.author | Mo, An | |
dc.contributor.author | Izzi, Fabio | |
dc.contributor.author | Gönen, Emre Cemal | |
dc.contributor.author | Häufle, Daniel F. B. | |
dc.contributor.author | Badri-Spröwitz, Alexander | |
dc.date.accessioned | 2025-04-02T13:49:32Z | |
dc.date.issued | 2023 | |
dc.date.updated | 2024-11-13T08:56:55Z | |
dc.description.abstract | Animals run robustly in diverse terrain. This locomotion robustness is puzzling because axon conduction velocity is limited to a few tens of meters per second. If reflex loops deliver sensory information with significant delays, one would expect a destabilizing effect on sensorimotor control. Hence, an alternative explanation describes a hierarchical structure of low-level adaptive mechanics and high-level sensorimotor control to help mitigate the effects of transmission delays. Motivated by the concept of an adaptive mechanism triggering an immediate response, we developed a tunable physical damper system. Our mechanism combines a tendon with adjustable slackness connected to a physical damper. The slack damper allows adjustment of damping force, onset timing, effective stroke, and energy dissipation. We characterize the slack damper mechanism mounted to a legged robot controlled in open-loop mode. The robot hops vertically and planarly over varying terrains and perturbations. During forward hopping, slack-based damping improves faster perturbation recovery (up to 170%) at higher energetic cost (27%). The tunable slack mechanism auto-engages the damper during perturbations, leading to a perturbation-trigger damping, improving robustness at a minimum energetic cost. With the results from the slack damper mechanism, we propose a new functional interpretation of animals’ redundant muscle tendons as tunable dampers. | en |
dc.description.sponsorship | Projekt DEAL | |
dc.identifier.issn | 2045-2322 | |
dc.identifier.other | 1925762467 | |
dc.identifier.uri | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-161140 | de |
dc.identifier.uri | https://elib.uni-stuttgart.de/handle/11682/16114 | |
dc.identifier.uri | https://doi.org/10.18419/opus-16095 | |
dc.language.iso | en | |
dc.relation.uri | doi:10.1038/s41598-023-30318-3 | |
dc.rights | CC BY | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 620 | |
dc.title | Slack-based tunable damping leads to a trade-off between robustness and efficiency in legged locomotion | en |
dc.type | article | |
dc.type.version | publishedVersion | |
ubs.fakultaet | Bau- und Umweltingenieurwissenschaften | |
ubs.fakultaet | Fakultätsübergreifend / Sonstige Einrichtung | |
ubs.institut | Institut für Modellierung und Simulation Biomechanischer Systeme | |
ubs.institut | Fakultätsübergreifend / Sonstige Einrichtung | |
ubs.publikation.seiten | 12 | |
ubs.publikation.source | Scientific reports 13 (2023), No. 3290 | |
ubs.publikation.typ | Zeitschriftenartikel |