Thermodynamical stability analysis of a model quasicrystal

Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The thermodynamical stability of a simple 2D model quasicrystal is analysed using the theory of the phason elastic free energy. Atoms in the crystal interact via a double-well potential called the Lennard-Jones Gauß-potenital. The essential mechanisms that support the quasicrystal's free energy are atom jumps called phasonic flips. The distribution of such flips in a crystal is computed in dependency of the crystal lattice, which is parameterized by a 2x2-matrix called the phasonic strain. This computation is fully analytic and is based on the popular cut-and-project-scheme for quasicrystals. The quasicrystal is found to be instable at low temperature but stabilized at high temperature due to large entropy. This is in accordance with an MD-simulation from 2008 that used the LJG-Interaction-potential for the first time.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By