Stability criteria for Bayesian calibration of reservoir sedimentation models

dc.contributor.authorMouris, Kilian
dc.contributor.authorAcuna Espinoza, Eduardo
dc.contributor.authorSchwindt, Sebastian
dc.contributor.authorMohammadi, Farid
dc.contributor.authorHaun, Stefan
dc.contributor.authorWieprecht, Silke
dc.contributor.authorOladyshkin, Sergey
dc.date.accessioned2025-03-18T15:36:12Z
dc.date.issued2023
dc.date.updated2024-11-02T09:20:38Z
dc.description.abstractModeling reservoir sedimentation is particularly challenging due to the simultaneous simulation of shallow shores, tributary deltas, and deep waters. The shallow upstream parts of reservoirs, where deltaic avulsion and erosion processes occur, compete with the validity of modeling assumptions used to simulate the deposition of fine sediments in deep waters. We investigate how complex numerical models can be calibrated to accurately predict reservoir sedimentation in the presence of competing model simplifications and identify the importance of calibration parameters for prioritization in measurement campaigns. This study applies Bayesian calibration, a supervised learning technique using surrogate-assisted Bayesian inversion with a Gaussian Process Emulator to calibrate a two-dimensional (2d) hydro-morphodynamic model for simulating sedimentation processes in a reservoir in Albania. Four calibration parameters were fitted to obtain the statistically best possible simulation of bed level changes between 2016 and 2019 through two differently constraining data scenarios. One scenario included measurements from the entire upstream half of the reservoir. Another scenario only included measurements in the geospatially valid range of the numerical model. Model accuracy parameters, Bayesian model evidence, and the variability of the four calibration parameters indicate that Bayesian calibration only converges toward physically meaningful parameter combinations when the calibration nodes are in the valid range of the numerical model. The Bayesian approach also allowed for a comparison of multiple parameters and found that the dry bulk density of the deposited sediments is the most important factor for calibration.en
dc.description.sponsorshipProjekt DEAL
dc.identifier.issn2363-6211
dc.identifier.issn2363-6203
dc.identifier.other1923484796
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-160280de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16028
dc.identifier.urihttps://doi.org/10.18419/opus-16009
dc.language.isoen
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/776608
dc.relation.uridoi:10.1007/s40808-023-01712-7
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc624
dc.titleStability criteria for Bayesian calibration of reservoir sedimentation modelsen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetBau- und Umweltingenieurwissenschaften
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Wasser- und Umweltsystemmodellierung
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.seiten3643-3661
ubs.publikation.sourceModeling earth systems and environment 9 (2023), S. 3643-3661
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s40808-023-01712-7.pdf
Size:
3.02 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: