Bayesian calibration points to misconceptions in three‐dimensional hydrodynamic reservoir modeling

dc.contributor.authorSchwindt, Sebastian
dc.contributor.authorCallau Medrano, Sergio
dc.contributor.authorMouris, Kilian
dc.contributor.authorBeckers, Felix
dc.contributor.authorHaun, Stefan
dc.contributor.authorNowak, Wolfgang
dc.contributor.authorWieprecht, Silke
dc.contributor.authorOladyshkin, Sergey
dc.date.accessioned2023-08-04T14:05:44Z
dc.date.available2023-08-04T14:05:44Z
dc.date.issued2023de
dc.date.updated2023-04-19T13:35:34Z
dc.description.abstractThree‐dimensional (3d) numerical models are state‐of‐the‐art for investigating complex hydrodynamic flow patterns in reservoirs and lakes. Such full‐complexity models are computationally demanding and their calibration is challenging regarding time, subjective decision‐making, and measurement data availability. In addition, physically unrealistic model assumptions or combinations of calibration parameters may remain undetected and lead to overfitting. In this study, we investigate if and how so‐called Bayesian calibration aids in characterizing faulty model setups driven by measurement data and calibration parameter combinations. Bayesian calibration builds on recent developments in machine learning and uses a Gaussian process emulator as a surrogate model, which runs considerably faster than a 3d numerical model. We Bayesian‐calibrate a Delft3D‐FLOW model of a pump‐storage reservoir as a function of the background horizontal eddy viscosity and diffusivity, and initial water temperature profile. We consider three scenarios with varying degrees of faulty assumptions and different uses of flow velocity and water temperature measurements. One of the scenarios forces completely unrealistic, rapid lake stratification and still yields similarly good calibration accuracy as more correct scenarios regarding global statistics, such as the root‐mean‐square error. An uncertainty assessment resulting from the Bayesian calibration indicates that the completely unrealistic scenario forces fast lake stratification through highly uncertain mixing‐related model parameters. Thus, Bayesian calibration describes the quality of calibration and correctness of model assumptions through geometric characteristics of posterior distributions. For instance, most likely calibration parameter values (posterior distribution maxima) at the calibration range limit or with widespread uncertainty characterize poor model assumptions and calibration.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipMinisterium für Wissenschaft, Forschung und Kunst Baden‐Württembergde
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn1944-7973
dc.identifier.issn0043-1397
dc.identifier.other1857226801
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-133953de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13395
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13376
dc.language.isoende
dc.relation.uridoi:10.1029/2022WR033660de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/de
dc.subject.ddc624de
dc.titleBayesian calibration points to misconceptions in three‐dimensional hydrodynamic reservoir modelingen
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Wasser- und Umweltsystemmodellierungde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten24de
ubs.publikation.sourceWater resources research 59 (2023), No. e2022WR033660de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
WRCR_WRCR26498.pdf
Size:
3.41 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: