The use of nonnormalized surface EMG and feature inputs for LSTM-based powered ankle prosthesis control algorithm development

dc.contributor.authorKeleş, Ahmet Doğukan
dc.contributor.authorTürksoy, Ramazan Tarık
dc.contributor.authorYucesoy, Can A.
dc.date.accessioned2023-07-31T15:02:54Z
dc.date.available2023-07-31T15:02:54Z
dc.date.issued2023de
dc.date.updated2023-07-17T20:13:41Z
dc.description.abstractAdvancements in instrumentation support improved powered ankle prostheses hardware development. However, control algorithms have limitations regarding number and type of sensors utilized and achieving autonomous adaptation, which is key to a natural ambulation. Surface electromyogram (sEMG) sensors are promising. With a minimized number of sEMG inputs an economic control algorithm can be developed, whereas limiting the use of lower leg muscles will provide a practical algorithm for both ankle disarticulation and transtibial amputation. To determine appropriate sensor combinations, a systematic assessment of the predictive success of variations of multiple sEMG inputs in estimating ankle position and moment has to conducted. More importantly, tackling the use of nonnormalized sEMG data in such algorithm development to overcome processing complexities in real-time is essential, but lacking. We used healthy population level walking data to (1) develop sagittal ankle position and moment predicting algorithms using nonnormalized sEMG, and (2) rank all muscle combinations based on success to determine economic and practical algorithms. Eight lower extremity muscles were studied as sEMG inputs to a long-short-term memory (LSTM) neural network architecture: tibialis anterior (TA), soleus (SO), medial gastrocnemius (MG), peroneus longus (PL), rectus femoris (RF), vastus medialis (VM), biceps femoris (BF) and gluteus maximus (GMax). Five features extracted from nonnormalized sEMG amplitudes were used: integrated EMG (IEMG), mean absolute value (MAV), Willison amplitude (WAMP), root mean square (RMS) and waveform length (WL). Muscle and feature combination variations were ranked using Pearson’s correlation coefficient (r > 0.90 indicates successful correlations), the root-mean-square error and one-dimensional statistical parametric mapping between the original data and LSTM response. The results showed that IEMG+WL yields the best feature combination performance. The best performing variation was MG + RF + VM (rposition = 0.9099 and rmoment = 0.9707) whereas, PL (rposition = 0.9001, rmoment = 0.9703) and GMax+VM (rposition = 0.9010, rmoment = 0.9718) were distinguished as the economic and practical variations, respectively. The study established for the first time the use of nonnormalized sEMG in control algorithm development for level walking.en
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBI TAK)de
dc.description.sponsorshipEuropean University of Brain and Technology - Research and Innovation funded by the European Commisionde
dc.identifier.issn1662-453X
dc.identifier.other1857217152
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-133766de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13376
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13357
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/101035817de
dc.relation.uridoi:10.3389/fnins.2023.1158280de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc570de
dc.subject.ddc620de
dc.titleThe use of nonnormalized surface EMG and feature inputs for LSTM-based powered ankle prosthesis control algorithm developmenten
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Modellierung und Simulation Biomechanischer Systemede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten17de
ubs.publikation.sourceFrontiers in neuroscience 17 (2023), No. 1158280de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 4 of 4
No Thumbnail Available
Name:
Data_Sheet_1.DOCX
Size:
1.32 MB
Format:
Unknown data format
Description:
Supplement
No Thumbnail Available
Name:
Data_Sheet_2.DOCX
Size:
81.56 KB
Format:
Unknown data format
Description:
Supplement
No Thumbnail Available
Name:
Data_Sheet_3.DOCX
Size:
42.49 KB
Format:
Unknown data format
Description:
Supplement
Thumbnail Image
Name:
fnins-17-1158280.pdf
Size:
2.48 MB
Format:
Adobe Portable Document Format
Description:
Artikel

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: