Existence and uniqueness of nonmonotone solutions in porous media flow
dc.contributor.author | Steinle, Rouven | |
dc.contributor.author | Kleiner, Tillmann | |
dc.contributor.author | Kumar, Pradeep | |
dc.contributor.author | Hilfer, Rudolf | |
dc.date.accessioned | 2023-01-19T13:12:58Z | |
dc.date.available | 2023-01-19T13:12:58Z | |
dc.date.issued | 2022 | |
dc.date.updated | 2022-08-03T09:44:22Z | |
dc.description.abstract | Existence and uniqueness of solutions for a simplified model of immiscible two-phase flow in porous media are obtained in this paper. The mathematical model is a simplified physical model with hysteresis in the flux functions. The resulting semilinear hyperbolic-parabolic equation is expected from numerical work to admit non-monotone imbibition-drainage fronts. We prove the local existence of imbibition-drainage fronts. The uniqueness, global existence, maximal regularity and boundedness of the solutions are also discussed. Methodically, the results are established by means of semigroup theory and fractional interpolation spaces. | en |
dc.identifier.issn | 2075-1680 | |
dc.identifier.other | 1831837439 | |
dc.identifier.uri | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-126795 | de |
dc.identifier.uri | http://elib.uni-stuttgart.de/handle/11682/12679 | |
dc.identifier.uri | http://dx.doi.org/10.18419/opus-12660 | |
dc.language.iso | en | de |
dc.relation.uri | doi:10.3390/axioms11070327 | de |
dc.rights | info:eu-repo/semantics/openAccess | de |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | de |
dc.subject.ddc | 530 | de |
dc.title | Existence and uniqueness of nonmonotone solutions in porous media flow | en |
dc.type | article | de |
ubs.fakultaet | Mathematik und Physik | de |
ubs.institut | Institut für Computerphysik | de |
ubs.publikation.seiten | 13 | de |
ubs.publikation.source | Axioms 11 (2022), No. 327 | de |
ubs.publikation.typ | Zeitschriftenartikel | de |