Existence and uniqueness of nonmonotone solutions in porous media flow

dc.contributor.authorSteinle, Rouven
dc.contributor.authorKleiner, Tillmann
dc.contributor.authorKumar, Pradeep
dc.contributor.authorHilfer, Rudolf
dc.date.accessioned2023-01-19T13:12:58Z
dc.date.available2023-01-19T13:12:58Z
dc.date.issued2022
dc.date.updated2022-08-03T09:44:22Z
dc.description.abstractExistence and uniqueness of solutions for a simplified model of immiscible two-phase flow in porous media are obtained in this paper. The mathematical model is a simplified physical model with hysteresis in the flux functions. The resulting semilinear hyperbolic-parabolic equation is expected from numerical work to admit non-monotone imbibition-drainage fronts. We prove the local existence of imbibition-drainage fronts. The uniqueness, global existence, maximal regularity and boundedness of the solutions are also discussed. Methodically, the results are established by means of semigroup theory and fractional interpolation spaces.en
dc.identifier.issn2075-1680
dc.identifier.other1831837439
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-126795de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12679
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12660
dc.language.isoende
dc.relation.uridoi:10.3390/axioms11070327de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc530de
dc.titleExistence and uniqueness of nonmonotone solutions in porous media flowen
dc.typearticlede
ubs.fakultaetMathematik und Physikde
ubs.institutInstitut für Computerphysikde
ubs.publikation.seiten13de
ubs.publikation.sourceAxioms 11 (2022), No. 327de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
axioms-11-00327-v3.pdf
Size:
649.47 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Plain Text
Description: