Semiaffine stable planes

dc.contributor.authorLöwen, Rainer
dc.contributor.authorStroppel, Markus J.
dc.date.accessioned2025-04-16T09:42:42Z
dc.date.issued2023de
dc.date.updated2024-10-31T08:20:35Z
dc.description.abstractA locally compact stable plane of positive topological dimension will be called semiaffine if for every line L and every point p not in L there is at most one line passing through p and disjoint from L . We show that then the plane is either an affine or projective plane or a punctured projective plane (i.e., a projective plane with one point deleted). We also compare this with the situation in general linear spaces (without topology), where P. Dembowski showed that the analogue of our main result is true for finite spaces but fails in general.en
dc.description.sponsorshipProjekt DEAL
dc.identifier.issn2191-0383
dc.identifier.issn0138-4821
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-162470de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16247
dc.identifier.urihttps://doi.org/10.18419/opus-16228
dc.language.isoende
dc.relation.uridoi:10.1007/s13366-023-00720-zde
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510
dc.titleSemiaffine stable planesen
dc.typearticlede
dc.type.versionpublishedVersion
ubs.fakultaetMathematik und Physik
ubs.publikation.noppnyesde
ubs.publikation.seiten19-25
ubs.publikation.sourceBeiträge zur Algebra und Geometrie 66 (2025), S. 19-25
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s13366-023-00720-z.pdf
Size:
232.26 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: