A new method to design energy-conserving surrogate models for the coupled, nonlinear responses of intervertebral discs

dc.contributor.authorHammer, Maria
dc.contributor.authorWenzel, Tizian
dc.contributor.authorSantin, Gabriele
dc.contributor.authorMeszaros-Beller, Laura
dc.contributor.authorLittle, Judith Paige
dc.contributor.authorHaasdonk, Bernard
dc.contributor.authorSchmitt, Syn
dc.date.accessioned2025-05-23T07:40:43Z
dc.date.issued2024
dc.date.updated2025-01-24T11:12:46Z
dc.description.abstractThe aim of this study was to design physics-preserving and precise surrogate models of the nonlinear elastic behaviour of an intervertebral disc (IVD). Based on artificial force-displacement data sets from detailed finite element (FE) disc models, we used greedy kernel and polynomial approximations of second, third and fourth order to train surrogate models for the scalar force-torque-potential. Doing so, the resulting models of the elastic IVD responses ensured the conservation of mechanical energy through their structure. At the same time, they were capable of predicting disc forces in a physiological range of motion and for the coupling of all six degrees of freedom of an intervertebral joint. The performance of all surrogate models for a subject-specific L4|5 disc geometry was evaluated both on training and test data obtained from uncoupled (one-dimensional), weakly coupled (two-dimensional), and random movement trajectories in the entire six-dimensional (6d) physiological displacement range, as well as on synthetic kinematic data. We observed highest precisions for the kernel surrogate followed by the fourth-order polynomial model. Both clearly outperformed the second-order polynomial model which is equivalent to the commonly used stiffness matrix in neuro-musculoskeletal simulations. Hence, the proposed model architectures have the potential to improve the accuracy and, therewith, validity of load predictions in neuro-musculoskeletal spine models.en
dc.description.sponsorshipProjekt DEAL
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.identifier.issn1617-7940
dc.identifier.issn1617-7959
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-164270de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16427
dc.identifier.urihttps://doi.org/10.18419/opus-16408
dc.language.isoen
dc.relation.uridoi:10.1007/s10237-023-01804-4
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc570
dc.titleA new method to design energy-conserving surrogate models for the coupled, nonlinear responses of intervertebral discsen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetBau- und Umweltingenieurwissenschaften
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungen
ubs.fakultaetMathematik und Physik
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Modellierung und Simulation Biomechanischer Systeme
ubs.institutInstitut für Angewandte Analysis und numerische Simulation
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.noppnyesde
ubs.publikation.seiten757-780
ubs.publikation.sourceBiomechanics and modeling in mechanobiology 23 (2024), S. 757-780
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10237_2024_Article_1804.pdf
Size:
5.74 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: