Assessing rainfall radar errors with an inverse stochastic modelling framework

dc.contributor.authorGreen, Amy C.
dc.contributor.authorKilsby, Chris
dc.contributor.authorBárdossy, András
dc.date.accessioned2024-11-05T09:37:43Z
dc.date.available2024-11-05T09:37:43Z
dc.date.issued2024de
dc.date.updated2024-10-24T02:36:25Z
dc.description.abstractWeather radar is a crucial tool for rainfall observation and forecasting, providing high-resolution estimates in both space and time. Despite this, radar rainfall estimates are subject to many error sources - including attenuation, ground clutter, beam blockage and drop-size distribution - with the true rainfall field unknown. A flexible stochastic model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard weather radar processing methods and imposing path-integrated attenuation effects, a stochastic drop-size-distribution field, and sampling and random errors. This can provide realistic weather radar images, of which we know the true rainfall field and the corrected “best-guess” rainfall field which would be obtained if they were observed in a real-world case. The structure of these errors is then investigated, with a focus on the frequency and behaviour of “rainfall shadows”. Half of the simulated weather radar images have at least 3 % of their significant rainfall rates shadowed, and 25 % have at least 45 km 2 containing rainfall shadows, resulting in underestimation of the potential impacts of flooding. A model framework for investigating the behaviour of errors relating to the radar rainfall estimation process is demonstrated, with the flexible and efficient tool performing well in generating realistic weather radar images visually for a large range of event types.en
dc.description.sponsorshipNatural Environment Research Councilde
dc.identifier.issn1607-7938
dc.identifier.issn1027-5606
dc.identifier.other190941087X
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-152119de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15211
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15192
dc.language.isoende
dc.relation.uridoi:10.5194/hess-28-4539-2024de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc550de
dc.titleAssessing rainfall radar errors with an inverse stochastic modelling frameworken
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Wasser- und Umweltsystemmodellierungde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten4539-4558de
ubs.publikation.sourceHydrology and earth system sciences 28 (2024), S. 4539-4558de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
hess-28-4539-2024.pdf
Size:
12.27 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: