Spatiotemporal distribution of precipitates and mineral phase transition during biomineralization affect porosity-permeability relationships

dc.contributor.authorWeinhardt, Felix
dc.contributor.authorDeng, Jingxuan
dc.contributor.authorHommel, Johannes
dc.contributor.authorVahid Dastjerdi, Samaneh
dc.contributor.authorGerlach, Robin
dc.contributor.authorSteeb, Holger
dc.contributor.authorClass, Holger
dc.date.accessioned2024-11-13T11:05:54Z
dc.date.available2024-11-13T11:05:54Z
dc.date.issued2022de
dc.date.updated2024-11-02T08:38:27Z
dc.description.abstractEnzymatically induced calcium carbonate precipitation is a promising geotechnique with the potential, for example, to seal leakage pathways in the subsurface or to stabilize soils. Precipitation of calcium carbonate in a porous medium reduces the porosity and, consequently, the permeability. With pseudo-2D microfluidic experiments, including pressure monitoring and, for visualization, optical microscopy and X-ray computed tomography, pore-space alterations were reliably related to corresponding hydraulic responses. The study comprises six experiments with two different pore structures, a simple, quasi-1D structure, and a 2D structure. Using a continuous injection strategy with either constant or step-wise reduced flow rates, we identified key mechanisms that significantly influence the relationship between porosity and permeability. In the quasi-1D structure, the location of precipitates is more relevant to the hydraulic response (pressure gradients) than the overall porosity change. In the quasi-2D structure, this is different, because flow can bypass locally clogged regions, thus leading to steadier porosity-permeability relationships. Moreover, in quasi-2D systems, during continuous injection, preferential flow paths can evolve and remain open. Classical porosity-permeability power-law relationships with constant exponents cannot adequately describe this phenomenon. We furthermore observed coexistence and transformation of different polymorphs of calcium carbonate, namely amorphous calcium carbonate, vaterite, and calcite and discuss their influence on the observed development of preferential flow paths. This has so far not been accounted for in the state-of-the-art approaches for porosity–permeability relationships during calcium carbonate precipitation in porous media.en
dc.description.sponsorshipOpen Access funding enabled and organized by Projekt DEALde
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.identifier.issn1573-1634
dc.identifier.issn0169-3913
dc.identifier.other1912192594
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-152714de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15271
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15252
dc.language.isoende
dc.relation.uridoi:10.1007/s11242-022-01782-8de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleSpatiotemporal distribution of precipitates and mineral phase transition during biomineralization affect porosity-permeability relationshipsen
dc.title.alternativeMicrofluidic investigationsde
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Mechanik (Bauwesen)de
ubs.institutInstitut für Wasser- und Umweltsystemmodellierungde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten527-549de
ubs.publikation.sourceTransport in porous media 143 (2022), S. 527-549de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s11242-022-01782-8.pdf
Size:
3.62 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: