Diagnosing similarities in probabilistic multi-model ensembles : an application to soil-plant-growth-modeling

dc.contributor.authorSchäfer Rodrigues Silva, Aline
dc.contributor.authorWeber, Tobias K. D.
dc.contributor.authorGayler, Sebastian
dc.contributor.authorGuthke, Anneli
dc.contributor.authorHöge, Marvin
dc.contributor.authorNowak, Wolfgang
dc.contributor.authorStreck, Thilo
dc.date.accessioned2024-11-12T09:53:43Z
dc.date.available2024-11-12T09:53:43Z
dc.date.issued2022de
dc.date.updated2024-11-02T08:38:24Z
dc.description.abstractThere has been an increasing interest in using multi-model ensembles over the past decade. While it has been shown that ensembles often outperform individual models, there is still a lack of methods that guide the choice of the ensemble members. Previous studies found that model similarity is crucial for this choice. Therefore, we introduce a method that quantifies similarities between models based on so-called energy statistics. This method can also be used to assess the goodness-of-fit to noisy or deterministic measurements. To guide the interpretation of the results, we combine different visualization techniques, which reveal different insights and thereby support the model development. We demonstrate the proposed workflow on a case study of soil–plant-growth modeling, comparing three models from the Expert-N library. Results show that model similarity and goodness-of-fit vary depending on the quantity of interest. This confirms previous studies that found that “there is no single best model” and hence, combining several models into an ensemble can yield more robust results.en
dc.description.sponsorshipProjekt DEALde
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.identifier.issn2363-6211
dc.identifier.issn2363-6203
dc.identifier.other1912227991
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-152659de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15265
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15246
dc.language.isoende
dc.relation.uridoi:10.1007/s40808-022-01427-1de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc550de
dc.titleDiagnosing similarities in probabilistic multi-model ensembles : an application to soil-plant-growth-modelingen
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Wasser- und Umweltsystemmodellierungde
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten5143-5175de
ubs.publikation.sourceModeling earth systems and environment 8 (2022), S. 5143-5175de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s40808-022-01427-1.pdf
Size:
7.02 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: