Field-theoretic thermodynamic uncertainty relation : general formulation exemplified with the Kardar-Parisi-Zhang equation

dc.contributor.authorNiggemann, Oliver
dc.contributor.authorSeifert, Udo
dc.date.accessioned2023-06-26T09:39:21Z
dc.date.available2023-06-26T09:39:21Z
dc.date.issued2020de
dc.date.updated2023-05-15T12:10:22Z
dc.description.abstractWe propose a field-theoretic thermodynamic uncertainty relation as an extension of the one derived so far for a Markovian dynamics on a discrete set of states and for overdamped Langevin equations. We first formulate a framework which describes quantities like current, entropy production and diffusivity in the case of a generic field theory. We will then apply this general setting to the one-dimensional Kardar-Parisi-Zhang equation, a paradigmatic example of a non-linear field-theoretic Langevin equation. In particular, we will treat the dimensionless Kardar-Parisi-Zhang equation with an effective coupling parameter measuring the strength of the non-linearity. It will be shown that a field-theoretic thermodynamic uncertainty relation holds up to second order in a perturbation expansion with respect to a small effective coupling constant. The calculations show that the field-theoretic variant of the thermodynamic uncertainty relation is not saturated for the case of the Kardar-Parisi-Zhang equation due to an excess term stemming from its non-linearity.en
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn0022-4715
dc.identifier.issn1572-9613
dc.identifier.other1852277564
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-132255de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13225
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13206
dc.language.isoende
dc.relation.uridoi:10.1007/s10955-019-02479-xde
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc530de
dc.titleField-theoretic thermodynamic uncertainty relation : general formulation exemplified with the Kardar-Parisi-Zhang equationen
dc.typearticlede
ubs.fakultaetMathematik und Physikde
ubs.institutInstitut für Theoretische Physik IIde
ubs.publikation.seiten1142-1174de
ubs.publikation.sourceJournal of statistical physics 178 (2020), S. 1142-1174de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s10955-019-02479-x.pdf
Size:
583.6 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: