Optimizing NV magnetometry for magnetoneurography and magnetomyography applications

dc.contributor.authorZhang, Chen
dc.contributor.authorZhang, Jixing
dc.contributor.authorWidmann, Matthias
dc.contributor.authorBenke, Magnus
dc.contributor.authorKübler, Michael
dc.contributor.authorDasari, Durga
dc.contributor.authorKlotz, Thomas
dc.contributor.authorGizzi, Leonardo
dc.contributor.authorRöhrle, Oliver
dc.contributor.authorBrenner, Philipp
dc.contributor.authorWrachtrup, Jörg
dc.date.accessioned2024-04-23T11:32:11Z
dc.date.available2024-04-23T11:32:11Z
dc.date.issued2023de
dc.date.updated2023-11-13T22:18:03Z
dc.description.abstractMagnetometers based on color centers in diamond are setting new frontiers for sensing capabilities due to their combined extraordinary performances in sensitivity, bandwidth, dynamic range, and spatial resolution, with stable operability in a wide range of conditions ranging from room to low temperatures. This has allowed for its wide range of applications, from biology and chemical studies to industrial applications. Among the many, sensing of bio-magnetic fields from muscular and neurophysiology has been one of the most attractive applications for NV magnetometry due to its compact and proximal sensing capability. Although SQUID magnetometers and optically pumped magnetometers (OPM) have made huge progress in Magnetomyography (MMG) and Magnetoneurography (MNG), exploring the same with NV magnetometry is scant at best. Given the room temperature operability and gradiometric applications of the NV magnetometer, it could be highly sensitive in the pT/Hz-range even without magnetic shielding, bringing it close to industrial applications. The presented work here elaborates on the performance metrics of these magnetometers to the state-of-the-art techniques by analyzing the sensitivity, dynamic range, and bandwidth, and discusses the potential benefits of using NV magnetometers for MMG and MNG applications.en
dc.description.sponsorshipEuropean Union’s Horizon 2020 research and innovation programde
dc.description.sponsorshipFederal Ministry of Education and Research (BMBF)de
dc.description.sponsorshipEuropean Research Councilde
dc.identifier.issn1662-453X
dc.identifier.other1887242643
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-142610de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14261
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14242
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/820394de
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/742610de
dc.relationinfo:eu-repo/grantAgreement/EC/HE/101055186de
dc.relation.uridoi:10.3389/fnins.2022.1034391de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc530de
dc.subject.ddc570de
dc.titleOptimizing NV magnetometry for magnetoneurography and magnetomyography applicationsen
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetMathematik und Physikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Modellierung und Simulation Biomechanischer Systemede
ubs.institut3. Physikalisches Institutde
ubs.institutFraunhofer Institut für Produktionstechnik und Automatisierung (IPA)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten16de
ubs.publikation.sourceFrontiers in neuroscience 16 (2023), No. 1034391de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
fnins-16-1034391.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format
Description:
Artikel
Thumbnail Image
Name:
Presentation_1.PDF
Size:
1.15 MB
Format:
Adobe Portable Document Format
Description:
Supplement

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: