Stabilizing γ‐MgH2 at nanotwins in mechanically constrained nanoparticles
dc.contributor.author | Kammerer, Jochen A. | |
dc.contributor.author | Duan, Xiaoyang | |
dc.contributor.author | Neubrech, Frank | |
dc.contributor.author | Schröder, Rasmus R. | |
dc.contributor.author | Liu, Na | |
dc.contributor.author | Pfannmöller, Martin | |
dc.date.accessioned | 2024-04-12T07:36:51Z | |
dc.date.available | 2024-04-12T07:36:51Z | |
dc.date.issued | 2021 | de |
dc.date.updated | 2023-11-14T04:26:05Z | |
dc.description.abstract | Reversible hydrogen uptake and the metal/dielectric transition make the Mg/MgH2 system a prime candidate for solid‐state hydrogen storage and dynamic plasmonics. However, high dehydrogenation temperatures and slow dehydrogenation hamper broad applicability. One promising strategy to improve dehydrogenation is the formation of metastable γ‐MgH2. A nanoparticle (NP) design, where γ‐MgH2 forms intrinsically during hydrogenation is presented and a formation mechanism based on transmission electron microscopy results is proposed. Volume expansion during hydrogenation causes compressive stress within the confined, anisotropic NPs, leading to plastic deformation of β‐MgH2 via (301)β twinning. It is proposed that these twins nucleate γ‐MgH2 nanolamellas, which are stabilized by residual compressive stress. Understanding this mechanism is a crucial step toward cycle‐stable, Mg‐based dynamic plasmonic and hydrogen‐storage materials with improved dehydrogenation. It is envisioned that a more general design of confined NPs utilizes the inherent volume expansion to reform γ‐MgH2 during each rehydrogenation. | en |
dc.description.sponsorship | Ministry of Science, Research and the Arts Baden‐Württemberg | de |
dc.description.sponsorship | HEiKA materials research center | de |
dc.description.sponsorship | Deutsche Forschungsgemeinschaft | de |
dc.description.sponsorship | German Research Foundation | de |
dc.description.sponsorship | European Research Council | de |
dc.description.sponsorship | German Research Foundation | de |
dc.description.sponsorship | Projekt DEAL | de |
dc.identifier.issn | 1521-4095 | |
dc.identifier.issn | 0935-9648 | |
dc.identifier.other | 188722016X | |
dc.identifier.uri | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-142222 | de |
dc.identifier.uri | http://elib.uni-stuttgart.de/handle/11682/14222 | |
dc.identifier.uri | http://dx.doi.org/10.18419/opus-14203 | |
dc.language.iso | en | de |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/638001 | de |
dc.relation.uri | doi:10.1002/adma.202008259 | de |
dc.rights | info:eu-repo/semantics/openAccess | de |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | de |
dc.subject.ddc | 530 | de |
dc.subject.ddc | 620 | de |
dc.title | Stabilizing γ‐MgH2 at nanotwins in mechanically constrained nanoparticles | en |
dc.type | article | de |
ubs.fakultaet | Mathematik und Physik | de |
ubs.fakultaet | Externe wissenschaftliche Einrichtungen | de |
ubs.fakultaet | Fakultätsübergreifend / Sonstige Einrichtung | de |
ubs.institut | 2. Physikalisches Institut | de |
ubs.institut | Max-Planck-Institut für Festkörperforschung | de |
ubs.institut | Fakultätsübergreifend / Sonstige Einrichtung | de |
ubs.publikation.seiten | 9 | de |
ubs.publikation.source | Advanced materials 33 (2021), No. 2008259 | de |
ubs.publikation.typ | Zeitschriftenartikel | de |