Bayesian calibration and validation of a large‐scale and time‐demanding sediment transport model

dc.contributor.authorBeckers, Felix
dc.contributor.authorHeredia, Andrés
dc.contributor.authorNoack, Markus
dc.contributor.authorNowak, Wolfgang
dc.contributor.authorWieprecht, Silke
dc.contributor.authorOladyshkin, Sergey
dc.date.accessioned2024-10-10T13:31:59Z
dc.date.available2024-10-10T13:31:59Z
dc.date.issued2020de
dc.date.updated2023-11-14T05:54:40Z
dc.description.abstractThis study suggests a stochastic Bayesian approach for calibrating and validating morphodynamic sediment transport models and for quantifying parametric uncertainties in order to alleviate limitations of conventional (manual, deterministic) calibration procedures. The applicability of our method is shown for a large‐scale (11.0 km) and time‐demanding (9.14 hr for the period 2002-2013) 2‐D morphodynamic sediment transport model of the Lower River Salzach and for three most sensitive input parameters (critical Shields parameter, grain roughness, and grain size distribution). Since Bayesian methods require a significant number of simulation runs, this work proposes to construct a surrogate model, here with the arbitrary polynomial chaos technique. The surrogate model is constructed from a limited set of runs (n=20) of the full complex sediment transport model. Then, Monte Carlo‐based techniques for Bayesian calibration are used with the surrogate model (105 realizations in 4 hr). The results demonstrate that following Bayesian principles and iterative Bayesian updating of the surrogate model (10 iterations) enables to identify the most probable ranges of the three calibration parameters. Model verification based on the maximum a posteriori parameter combination indicates that the surrogate model accurately replicates the morphodynamic behavior of the sediment transport model for both calibration (RMSE = 0.31 m) and validation (RMSE = 0.42 m). Furthermore, it is shown that the surrogate model is highly effective in lowering the total computational time for Bayesian calibration, validation, and uncertainty analysis. As a whole, this provides more realistic calibration and validation of morphodynamic sediment transport models with quantified uncertainty in less time compared to conventional calibration procedures.en
dc.description.sponsorshipGerman Research Foundation (DFG)de
dc.identifier.issn1944-7973
dc.identifier.issn0043-1397
dc.identifier.other1905777930
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-150437de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15043
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15024
dc.language.isoende
dc.relation.uridoi:10.1029/2019WR026966de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc550de
dc.titleBayesian calibration and validation of a large‐scale and time‐demanding sediment transport modelen
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Wasser- und Umweltsystemmodellierungde
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten23de
ubs.publikation.sourceWater resources research 56 (2020), No. e2019WR026966de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
WRCR_WRCR24711.pdf
Size:
4.52 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: