Sequential generalized Riemann-Liouville derivatives based on distributional convolution

dc.contributor.authorKleiner, Tillmann
dc.contributor.authorHilfer, Rudolf
dc.date.accessioned2025-01-23T14:44:36Z
dc.date.available2025-01-23T14:44:36Z
dc.date.issued2022de
dc.date.updated2024-11-02T09:08:22Z
dc.description.abstractSequential generalized fractional Riemann-Liouville derivatives are introduced as composites of distributional derivatives on the right half axis and partially defined operators, called Dirac-function removers, that remove the component of singleton support at the origin of distributions that are of order zero on a neighborhood of the origin. The concept of Dirac-function removers allows to formulate generalized initial value problems with less restrictions on the orders and types than previous approaches to sequential fractional derivatives. The well-posedness of these initial value problems and the structure of their solutions are studied.en
dc.description.sponsorshipProjekt DEAL.de
dc.identifier.issn1314-2224
dc.identifier.issn1311-0454
dc.identifier.other1920177337
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-155743de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15574
dc.identifier.urihttps://doi.org/10.18419/opus-15555
dc.language.isoende
dc.relation.uridoi:10.1007/s13540-021-00012-0de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc510de
dc.titleSequential generalized Riemann-Liouville derivatives based on distributional convolutionen
dc.typearticlede
ubs.fakultaetMathematik und Physikde
ubs.institutInstitut für Computerphysikde
ubs.publikation.seiten267-298de
ubs.publikation.sourceFractional calculus and applied analysis 25 (2022), S. 267-298de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s13540-021-00012-0.pdf
Size:
605.29 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: