Diagnosis of model errors with a sliding time‐window Bayesian analysis

dc.contributor.authorHsueh, Han‐Fang
dc.contributor.authorGuthke, Anneli
dc.contributor.authorWöhling, Thomas
dc.contributor.authorNowak, Wolfgang
dc.date.accessioned2024-03-07T14:41:38Z
dc.date.available2024-03-07T14:41:38Z
dc.date.issued2022de
dc.date.updated2023-11-14T02:06:08Z
dc.description.abstractDeterministic hydrological models with uncertain, but inferred‐to‐be‐time‐invariant parameters typically show time‐dependent model errors. Such errors can occur if a hydrological process is active in certain time periods in nature, but is not resolved by the model or by its input. Such missing processes could become visible during calibration as time‐dependent best‐fit values of model parameters. We propose a formal time‐windowed Bayesian analysis to diagnose this type of model error, formalizing the question “In which period of the calibration time‐series does the model statistically disqualify itself as quasi‐true?” Using Bayesian model evidence (BME) as model performance metric, we determine how much the data in time windows of the calibration time‐series support or refute the model. Then, we track BME over sliding time windows to obtain a dynamic, time‐windowed BME (tBME) and search for sudden decreases that indicate an onset of model error. tBME also allows us to perform a formal, sliding likelihood‐ratio test of the model against the data. Our proposed approach is designed to detect error occurrence on various temporal scales, which is especially useful in hydrological modeling. We illustrate this by applying our proposed method to soil moisture modeling. We test tBME as model error indicator on several synthetic and real‐world test cases that we designed to vary in error sources (structure and input) and error time scales. Results prove the successful detection errors in dynamic models. Moreover, the time sequence of posterior parameter distributions helps to investigate the reasons for model error and provide guidance for model improvement.en
dc.description.sponsorshipGerman Research Foundation (DFG)de
dc.identifier.issn1944-7973
dc.identifier.issn0043-1397
dc.identifier.other1883039754
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-140378de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14037
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14018
dc.language.isoende
dc.relation.uridoi:10.1029/2021WR030590de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc624de
dc.titleDiagnosis of model errors with a sliding time‐window Bayesian analysisen
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Wasser- und Umweltsystemmodellierungde
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten48de
ubs.publikation.sourceWater resources research 58 (2022), No. e2021WR030590de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
WRCR_WRCR25757.pdf
Size:
4.78 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: