Effects of geometric individualisation of a human spine model on load sharing : neuro-musculoskeletal simulation reveals significant differences in ligament and muscle contribution

dc.contributor.authorMeszaros-Beller, Laura
dc.contributor.authorHammer, Maria
dc.contributor.authorRiede, Julia M.
dc.contributor.authorPivonka, Peter
dc.contributor.authorLittle, J. Paige
dc.contributor.authorSchmitt, Syn
dc.date.accessioned2025-03-18T14:19:51Z
dc.date.issued2023
dc.date.updated2024-11-02T09:20:36Z
dc.description.abstractIn spine research, two possibilities to generate models exist: generic (population-based) models representing the average human and subject-specific representations of individuals. Despite the increasing interest in subject specificity, individualisation of spine models remains challenging. Neuro-musculoskeletal (NMS) models enable the analysis and prediction of dynamic motions by incorporating active muscles attaching to bones that are connected using articulating joints under the assumption of rigid body dynamics. In this study, we used forward-dynamic simulations to compare a generic NMS multibody model of the thoracolumbar spine including fully articulated vertebrae, detailed musculature, passive ligaments and linear intervertebral disc (IVD) models with an individualised model to assess the contribution of individual biological structures. Individualisation was achieved by integrating skeletal geometry from computed tomography and custom-selected muscle and ligament paths. Both models underwent a gravitational settling process and a forward flexion-to-extension movement. The model-specific load distribution in an equilibrated upright position and local stiffness in the L4/5 functional spinal unit (FSU) is compared. Load sharing between occurring internal forces generated by individual biological structures and their contribution to the FSU stiffness was computed. The main finding of our simulations is an apparent shift in load sharing with individualisation from an equally distributed element contribution of IVD, ligaments and muscles in the generic spine model to a predominant muscle contribution in the individualised model depending on the analysed spine level.en
dc.description.sponsorshipProjekt DEAL
dc.identifier.issn1617-7940
dc.identifier.issn1617-7959
dc.identifier.other1923485954
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-160250de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16025
dc.identifier.urihttps://doi.org/10.18419/opus-16006
dc.language.isoen
dc.relation.uridoi:10.1007/s10237-022-01673-3
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620
dc.subject.ddc610
dc.titleEffects of geometric individualisation of a human spine model on load sharing : neuro-musculoskeletal simulation reveals significant differences in ligament and muscle contributionen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetBau- und Umweltingenieurwissenschaften
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Modellierung und Simulation Biomechanischer Systeme
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.seiten669-694
ubs.publikation.sourceBiomechanics and modeling in mechanobiology 22 (2023), S. 669-694
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s10237-022-01673-3.pdf
Size:
7.34 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: