On the elementary theory of Heller triangulated categories
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Verdier's formalism of triangulated categories works with triangles, which fit into octahedra. These triangles enjoy a morphism prolongation property, but those octahedra do not. We establish a formalism of n-triangles such that the 2-triangles coincide with Verdier's triangles, such that the 3-triangles are particular Verdier octahedra, and such that n-triangles appear for all n. Now morphism prolongation holds for all n. Following Heller, we let the n-triangles be governed by an isotransformation between two shift functors on the stable category of n-pretriangles.
Verdiers Formalismus triangulierter Kategorien arbeitet mit Triangeln, welche sich zu Oktaedern zusammensetzen lassen. Diese Triangeln haben eine Morphismenfortsetzungseigenschaft, jene Oktaeder hingegen nicht. Wir erstellen einen Formalismus von n-Triangeln, in welchem die 2-Triangeln mit Verdiers Triangeln übereinstimmen, in welchem die 3-Triangeln spezielle Verdier-Oktaeder sind, und in welchem n-Triangeln für alle n auftreten. Morphismenfortsetzung gilt nun für alle n. Heller folgend lassen wir die n-Triangeln von einer Isotransformation zwischen zwei Shiftfunktoren auf der stabilen Kategorie der n-Prätriangel verwalten.