Vestigial singlet pairing in a fluctuating magnetic triplet superconductor and its implications for graphene superlattices

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Stacking and twisting graphene layers allows to create and control a two-dimensional electron liquid with strong correlations. Experiments indicate that these systems exhibit strong tendencies towards both magnetism and triplet superconductivity. Motivated by this phenomenology, we study a 2D model of fluctuating triplet pairing and spin magnetism. Individually, their respective order parameters, d and N , cannot order at finite temperature. Nonetheless, the model exhibits a variety of vestigial phases, including charge-4 e superconductivity and broken time-reversal symmetry. Our main focus is on a phase characterized by finite d  ⋅  N , which has the same symmetries as the BCS state, a Meissner effect, and metastable supercurrents, yet rather different spectral properties: most notably, the suppression of the electronic density of states at the Fermi level can resemble that of either a fully gapped or nodal superconductor, depending on parameters. This provides a possible explanation for recent tunneling experiments in the superconducting phase of graphene moiré systems.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as CC BY