Experimental evaluation of fluid connectivity in two‐phase flow in porous media during drainage

dc.contributor.authorVahid Dastjerdi, Samaneh
dc.contributor.authorKaradimitriou, Nikolaos
dc.contributor.authorHassanizadeh, S. Majid
dc.contributor.authorSteeb, Holger
dc.date.accessioned2023-08-21T13:19:23Z
dc.date.available2023-08-21T13:19:23Z
dc.date.issued2022de
dc.date.updated2023-04-19T18:50:22Z
dc.description.abstractThis study aims to experimentally investigate the possibility of combining two extended continuum theories for two‐phase flow. One of these theories considers interfacial area as a separate state variable, and the other explicitly discriminates between connected and disconnected phases. This combination enhances our potential to effectively model the apparent hysteresis, which generally dominates two‐phase flow. Using optical microscopy, we perform microfluidic experiments in quasi‐2D artificial porous media for various cyclic displacement processes and boundary conditions. Specifically for a number of sequential drainage processes, with detailed image (post‐)processing, pore‐scale parameters such as the interfacial area between the phases (wetting, non‐wetting, and solid), and local capillary pressure, as well as macroscopic parameters like saturation, are estimated. We show that discriminating between connected and disconnected clusters and the concept of the interfacial area as a separate state variable can be an appropriate way of modeling hysteresis in a two‐phase flow scheme. The drainage datasets of capillary pressure, saturation, and specific interfacial area, are plotted as a surface, given by f (Pc, sw, awn) = 0. These surfaces accommodate all data points within a reasonable experimental error, irrespective of the boundary conditions, as long as the corresponding liquid is connected to its inlet. However, this concept also shows signs of reduced efficiency as a modeling approach in datasets gathered through combining experiments with higher volumetric fluxes. We attribute this observation to the effect of the porous medium geometry on the phase distribution. This yields further elaboration, in which this speculation is thoroughly studied and analyzed.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipStuttgart Center for Simulation Science, Universität Stuttgartde
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn1944-7973
dc.identifier.issn0043-1397
dc.identifier.other1859822843
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-134624de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13462
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13443
dc.language.isoende
dc.relation.uridoi:10.1029/2022WR033451de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc550de
dc.titleExperimental evaluation of fluid connectivity in two‐phase flow in porous media during drainageen
dc.typearticlede
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Mechanik (Bauwesen)de
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten14de
ubs.publikation.sourceWater resources research 58 (2022), No. e2022WR033451de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
WRCR_WRCR26300.pdf
Size:
3.18 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: