Machine learning the microscopic form of nematic order in twisted double-bilayer graphene

dc.contributor.authorSobral, João Augusto
dc.contributor.authorObernauer, Stefan
dc.contributor.authorTurkel, Simon
dc.contributor.authorPasupathy, Abhay N.
dc.contributor.authorScheurer, Mathias S.
dc.date.accessioned2025-05-15T08:01:41Z
dc.date.issued2023
dc.date.updated2024-11-26T08:24:49Z
dc.description.abstractModern scanning probe techniques, such as scanning tunneling microscopy, provide access to a large amount of data encoding the underlying physics of quantum matter. In this work, we show how convolutional neural networks can be used to learn effective theoretical models from scanning tunneling microscopy data on correlated moiré superlattices. Moiré systems are particularly well suited for this task as their increased lattice constant provides access to intra-unit-cell physics, while their tunability allows for the collection of high-dimensional data sets from a single sample. Using electronic nematic order in twisted double-bilayer graphene as an example, we show that incorporating correlations between the local density of states at different energies allows convolutional neural networks not only to learn the microscopic nematic order parameter, but also to distinguish it from heterostrain. These results demonstrate that neural networks are a powerful method for investigating the microscopic details of correlated phenomena in moiré systems and beyond.en
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipGerman Research Foundation
dc.description.sponsorshipProjekt DEAL
dc.identifier.issn2041-1723
dc.identifier.other192739614X
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-163810de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16381
dc.identifier.urihttps://doi.org/10.18419/opus-16362
dc.language.isoen
dc.relationinfo:eu-repo/grantAgreement/EC/HE/101040651
dc.relation.uridoi:10.1038/s41467-023-40684-1
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530
dc.titleMachine learning the microscopic form of nematic order in twisted double-bilayer grapheneen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetMathematik und Physik
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Theoretische Physik III
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.seiten9
ubs.publikation.sourceNature communications 14 (2023), No. 5012
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s41467-023-40684-1.pdf
Size:
3.81 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: