Dielectric Mie voids : confining light in air

dc.contributor.authorHentschel, Mario
dc.contributor.authorKoshelev, Kirill
dc.contributor.authorSterl, Florian
dc.contributor.authorBoth, Steffen
dc.contributor.authorKarst, Julian
dc.contributor.authorShamsafar, Lida
dc.contributor.authorWeiss, Thomas
dc.contributor.authorKivshar, Yuri
dc.contributor.authorGiessen, Harald
dc.date.accessioned2025-04-14T09:51:32Z
dc.date.issued2023
dc.date.updated2024-11-26T08:17:19Z
dc.description.abstractManipulating light on the nanoscale has become a central challenge in metadevices, resonant surfaces, nanoscale optical sensors, and many more, and it is largely based on resonant light confinement in dispersive and lossy metals and dielectrics. Here, we experimentally implement a novel strategy for dielectric nanophotonics: Resonant subwavelength localized confinement of light in air. We demonstrate that voids created in high-index dielectric host materials support localized resonant modes with exceptional optical properties. Due to the confinement in air, the modes do not suffer from the loss and dispersion of the dielectric host medium. We experimentally realize these resonant Mie voids by focused ion beam milling into bulk silicon wafers and experimentally demonstrate resonant light confinement down to the UV spectral range at 265 nm (4.68 eV). Furthermore, we utilize the bright, intense, and naturalistic colours for nanoscale colour printing. Mie voids will thus push the operation of functional high-index metasurfaces into the blue and UV spectral range. The combination of resonant dielectric Mie voids with dielectric nanoparticles will more than double the parameter space for the future design of metasurfaces and other micro- and nanoscale optical elements. In particular, this extension will enable novel antenna and structure designs which benefit from the full access to the modal field inside the void as well as the nearly free choice of the high-index material for novel sensing and active manipulation strategies.en
dc.description.sponsorshipBaden-Württemberg-Stiftung
dc.description.sponsorshipAustralian Research Council
dc.description.sponsorshipEuropean Research Council
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.description.sponsorshipProjekt DEAL
dc.description.sponsorshipMinisterium für Wissenschaft, Forschung und Kunst Baden-Württemberg
dc.identifier.issn2047-7538
dc.identifier.issn2095-5545
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-161990de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16199
dc.identifier.urihttps://doi.org/10.18419/opus-16180
dc.language.isoen
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/321331
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/862549
dc.relation.uridoi:10.1038/s41377-022-01015-z
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530
dc.titleDielectric Mie voids : confining light in airen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetMathematik und Physik
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungen
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institut4. Physikalisches Institut
ubs.institutStuttgart Research Centre of Photonic Engineering (SCoPE)
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.noppnyesde
ubs.publikation.seiten12
ubs.publikation.sourceLight 12 (2023), No. 3
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s41377-022-01015-z.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: