Band structure calculation and tunneling measurements in (BEDT-TTF)2X (X=I3, IAuI)

Abstract

At about the same time when little proposed room-temperature superconductivity in organic polymers, it was suggested that the high-Tc of the more conventional A-15's is associated with their one-dimensional electronic band structure. When TTF-TCNQ was discovered in 1973, it was suggested that the electron-phonon coupling in this 1-D organic molecular crystal is responsible for the metal-to-insulator (Peierls) transition at 52 K2, and reducing λ will cause a crossover to a superconducting state. Since then, the electronic structure, the conduction mechanism, and the superconducting mechanism were subject to controversy. Therefore, it is of some importance to establish whether the electronic band structure, and conduction mechanism, are similar to those in more conventional metals, and whether the superconductivity mechanism is the normal BCS phonon-mediated interaction.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By