Molecular mechanics of disordered solids

dc.contributor.authorBamer, Franz
dc.contributor.authorEbrahem, Firaz
dc.contributor.authorMarkert, Bernd
dc.contributor.authorStamm, Benjamin
dc.date.accessioned2024-11-06T16:34:30Z
dc.date.available2024-11-06T16:34:30Z
dc.date.issued2023de
dc.date.updated2024-10-20T07:01:27Z
dc.description.abstractDisordered solids are ubiquitous in engineering and everyday use. Although research has made considerable progress in the last decades, our understanding of the mechanics of these materials is, at best, in an embryonic state. Since the nature of disorder complicates the realization of physically meaningful continuum-mechanical models, particle-based molecular descriptions provide a powerful alternative. This paper reviews the numerical realization of classical molecular dynamics from an engineer’s perspective, starting with selecting potential functions, boundary conditions, time integration, and thermodynamic ensembles. Then, we discuss the concept of the potential energy landscape and the computational realization of the most suitable minimization methods. Subsequently, we discuss the algorithms necessary to numerically generate disordered materials, considering their thermodynamic properties and structural identification. We comprehensively and critically review computational methods and strategies available to mimic disordered materials on a molecular level and discuss some intriguing phenomena that are, to date, mostly ignored when applying models based on continuum-mechanical frameworks. We present the crucial difference between the shear response of a crystalline and a disordered structure. In this context, we elaborate on why it is beneficial to use an overdamped, athermal description to disentangle the complex deformation mechanics of disordered solids and comprehensively discuss the theory of the mechanics of disordered materials, including the problems of prediction and reversibility. Furthermore, we examine the fracture process on the nanoscale and investigate the response behavior to more complex deformation protocols. Finally, we provide critical conclusions, including challenges and future perspectives for engineers.en
dc.description.sponsorshipOpen Access funding enabled and organized by Projekt DEAL.de
dc.description.sponsorshipExcellence Clusterde
dc.description.sponsorshipRWTH Aachen Universityde
dc.identifier.issn1134-3060
dc.identifier.issn1886-1784
dc.identifier.other1909498556
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-152328de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15232
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15213
dc.language.isoende
dc.relation.uridoi:10.1007/s11831-022-09861-1de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleMolecular mechanics of disordered solidsen
dc.typearticlede
ubs.fakultaetMathematik und Physikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Angewandte Analysis und numerische Simulationde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten2105-2180de
ubs.publikation.sourceArchives of computational methods in engineering 30 (2023), S. 2105-2180de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s11831-022-09861-1.pdf
Size:
8.52 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: