Solubilization of inclusion bodies : insights from explainable machine learning approaches

dc.contributor.authorWalther, Cornelia
dc.contributor.authorMartinetz, Michael C.
dc.contributor.authorFriedrich, Anja
dc.contributor.authorTscheließnig, Anne-Luise
dc.contributor.authorVoigtmann, Martin
dc.contributor.authorJung, Alexander
dc.contributor.authorBrocard, Cécile
dc.contributor.authorBluhmki, Erich
dc.contributor.authorSmiatek, Jens
dc.date.accessioned2023-10-13T12:44:31Z
dc.date.available2023-10-13T12:44:31Z
dc.date.issued2023de
dc.date.updated2023-08-21T15:39:57Z
dc.description.abstractWe present explainable machine learning approaches for gaining deeper insights into the solubilization processes of inclusion bodies. The machine learning model with the highest prediction accuracy for the protein yield is further evaluated with regard to Shapley additive explanation (SHAP) values in terms of feature importance studies. Our results highlight an inverse fractional relationship between the protein yield and total protein concentration. Further correlations can also be observed for the dominant influences of the urea concentration and the underlying pH values. All findings are used to develop an analytical expression that is in reasonable agreement with experimental data. The resulting master curve highlights the benefits of explainable machine learning approaches for the detailed understanding of certain biopharmaceutical manufacturing steps.en
dc.description.sponsorshipBoehringer Ingelheim Pharma GmbH & Co. KGde
dc.description.sponsorshipBoehringer Ingelheim RCV GmbH & Co KGde
dc.identifier.issn2673-2718
dc.identifier.other1869549414
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-136071de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13607
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13588
dc.language.isoende
dc.relation.uridoi:10.3389/fceng.2023.1227620de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc530de
dc.subject.ddc570de
dc.titleSolubilization of inclusion bodies : insights from explainable machine learning approachesen
dc.typearticlede
ubs.fakultaetMathematik und Physikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Computerphysikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten13de
ubs.publikation.sourceFrontiers in chemical engineering 5 (2023), No. 1227620de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 5 of 10
Thumbnail Image
Name:
DataSheet10.PDF
Size:
13.37 KB
Format:
Adobe Portable Document Format
Description:
Supplement
Thumbnail Image
Name:
DataSheet7.PDF
Size:
10.56 KB
Format:
Adobe Portable Document Format
Description:
Supplement
Thumbnail Image
Name:
DataSheet8.PDF
Size:
14.6 KB
Format:
Adobe Portable Document Format
Description:
Supplement
Thumbnail Image
Name:
DataSheet5.PDF
Size:
10.07 KB
Format:
Adobe Portable Document Format
Description:
Supplement
Thumbnail Image
Name:
fceng-05-1227620.pdf
Size:
1.37 MB
Format:
Adobe Portable Document Format
Description:
Artikel

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: